A-stable method for the solution of the cauchy problem for stiff systems of ordinary differential equations

  • S. S. Artem'ev
  • G. V. Demidov
Mathematical Programming And Numerical Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 27)


  1. [1]
    G.V.Demidov. About one method of constructing stable high order schemes (Russian). Information Bulletin "Chislennye metody mechaniki sploshnoi sredy", t.1, N 6, 1970, Novosibirsk.Google Scholar
  2. [2]
    V.A.Novikov and G.V.Demidov. A remark on one method of constructing high order schemes (Russian). "Chislennye metody mechaniki sploshnoi sredy", t.3, N 4, 1972, Novosibirsk.Google Scholar
  3. [3]
    G.Bjurel, G.Dahlquist, B.Lindberg, S.Linde, L.Óden. Survey of stiff ordinary differential equations, The Royal Institute of Technology, Stockholm, Report NA 70.11.Google Scholar
  4. [4]
    R.V. Hamming. Stable predictor-corrector methods for ordinary differential equations, JACM, 6, 1959, pp 34–47.Google Scholar
  5. [5]
    R.K. Brayton, F.G. Gustavson, G.D. Hachtel. A new efficient algorithm for solving differential algebraic systems using implicit backward differentiation formulas. Proceedings of the IEEE, volume 60, N 1, January 1972, pp98–108.Google Scholar
  6. [6]
    W.Liniger. Global accuracy and A-stability of one-and-two-step integration formulae for stiff ordinary differential equations, IBM Rep RC 2396 (1969).Google Scholar
  7. [7]
    G.L. Mazniy. "Dubna" monitor system (Russian). User's Manual, Dubna, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • S. S. Artem'ev
    • 1
  • G. V. Demidov
    • 1
  1. 1.Computing CenterNovosibirskUSSR

Personalised recommendations