Stretching by probabilistic tree automata and Santos grammars

  • Marek Karpiński
Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 28)


The characterization theorems on Santos grammars [8] by means of pseudo probabilistic tree languages stretchings have been given. They are all derivable from the Equivalence Theorems on probabilistic tree languages settled in [2].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Ellis, Probabilistic tree automata, Information and Control 19 (1971), 401–416.Google Scholar
  2. 2.
    M.Karpiński, Equivalence results on probabilistic tree languages, to appear.Google Scholar
  3. 3.
    M. Karpiński, Probabilistic climbing and sinking languages, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22/10 (1974).Google Scholar
  4. 4.
    M. Magidor and G. Moran, Probabilistic tree automata and context free languages, Israel J. Math. 8 (1970), 340–348.Google Scholar
  5. 5.
    M.O. Rabin, Mathematical theory of automata, Proc. Sympos. Appl. Math., Vol. 19, Amer. Math. Soc., Providence, R.I., 1968, pp. 153–175.Google Scholar
  6. 6.
    A. Salomaa, Probabilistic and weighted grammars, Information and Control 15 (1969), 529–544.Google Scholar
  7. 7.
    E.S. Santos, Computability by probabilistic Turing machines, Trans. Amer. Math. Soc. 159 (1971), 165–184.Google Scholar
  8. 8.
    E.S. Santos, Probabilistic grammars and automata, Information and Control 21 (1972), 27–47.Google Scholar
  9. 9.
    E.S. Santos, Regular probabilistic languages, Information and Control 23 (1973), 58–70.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Marek Karpiński
    • 1
  1. 1.The Mathematical Institute of the Polish Academy of SciencesPoznańPoland

Personalised recommendations