Ultralinear expressions

  • J. P. Crestin
Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 28)


The bracket operation, [A, B]={a b ã' : (a, a') ε A, b ε B} is used jointly with product and union to define ultralinear languages. General properties of this operation and of the operator on families of languages associated with it are given. A decomposition of the family of ultralinear languages into a semilattice of principal semiAFLs is obtained by these means.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.B. BANERJI, Phrase structure language, finite machines and channel capacity, Information and Control 16, (1963), 153–162.Google Scholar
  2. 2.
    L. BOASSON, J.P. CRESTIN, M. NIVAT, Familles de langages translatables et fermées par crochet, Acta Informatica 2 (1973), 383–393.Google Scholar
  3. 3.
    L. BOASSON, M. NIVAT, Sur diverses familles de langages fermées par transduction rationnelle, Acta Informatica 2 (1973), 180–188.Google Scholar
  4. 4.
    N. CHOMSKY, M.P. SCHUTZENBERGER, The algebraic theory of context-free languages, in Computer Programming and Formal System, Ed. P. Braffort, D. Hirschberg, North-Holland, Amsterdam (1967), 118–161.Google Scholar
  5. 5.
    A.B. CREMERS, S. GINSBURG, Context-free grammar forms, in Automata, Languages and Programming, Ed. J. Loeckx, Springer Verlag, Berlin (1974), 364–382.Google Scholar
  6. 6.
    S. GINSBURG, E.H. SPANIER, Finite-turn pushdown automata, SIAM J. Control 4 (1966), 429–453Google Scholar
  7. 7.
    S. GREIBACH, Syntactic operators on full semiAFLs, J. Comput. System Sciences 6 (1972), 30–76Google Scholar
  8. 8.
    M. NIVAT, Transduction des langages de Chomsky, Annales de l'Institut Fourier 18 (1968), 339–456.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. P. Crestin
    • 1
  1. 1.Ecole Nationale Supérieure de Techniques AvancéesParis

Personalised recommendations