Finite automata acceptation of infinite sequences

  • K. Wagner
  • L. Staiger
Automata Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 28)


Binary Relation Infinite Sequence Finite Automaton Topologic Type Circuit Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BÜCHI, J. R. On a decision method in restricted second order arithmetic. Proc. Intern. Congr. Logic, Method. and Philos. Sci. 1960, Stanford Univ. Press, Stanford, Calif., 1–11Google Scholar
  2. [2]
    McNAUGHTON, R. Testing and generating infinite sequences by a finite automaton. Inf. and Control. 9 (1966), 521–530Google Scholar
  3. [3]
    MÜLLER, D. E. Infinite sequences and finite machines. AIEE Proc. Fourth Annual Symp. Switching Circuit Theory and Logical Design, 1963, 3–16Google Scholar
  4. [4]
    RABIN, M. O. Decidability of second-order theories and automata of infinite trees. Trans. Am. Math. Soc. 141 (1969), 1–35Google Scholar
  5. [5]
    STAIGER, L.; WAGNER, K. Automatentheoretische und automatenfreie Charakterisierungen der topologischen Klassen regulärer Folgenmengen. EIK, to appearGoogle Scholar
  6. [6]
    STAIGER, L. Analog teoremy Ginsburga-Rosa dlja posledovatjelnostnych operatorov i reguljarnych mnoschestv posledovatjelnostej. Sbornik trudov Vytsch. Zentr. Ak. Nauk SSSR, to appearGoogle Scholar
  7. [7]
    TRACHTENBROT, B. A.; BARSDIN, J. M. Konjetschnyje avtomaty, isdvo. Nauka, Moskva 1970Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • K. Wagner
    • 1
  • L. Staiger
    • 1
  1. 1.Sektion Mathematik der Friedrich-Schiller-Universität69 JenaDDR

Personalised recommendations