Osterwalder-Schrader positivity in conformal invariant quantum field theory

New Developments in Quantum Theory
Part of the Lecture Notes in Physics book series (LNP, volume 37)


Green Function Partial Wave Operator Product Expansion Space Time Dimension Kinematical Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mack, G: J. de Physique 34, Colloque C-1 (Suppl. au No. 10) 99 (1973) and in: Renormalization and Invariance in Quantum Field Theorie, E. R. Caianiello (ed.), New York: Plenum Press 1974.Google Scholar
  2. 2.
    Osterwalder, K., Schrader, R.: Commun. Math. Phys. 31, 83 (1973) and in preparation.Google Scholar
  3. 2.a
    Osterwalder, K.: in: Constructive Quantum Field Theory, G. Velo and A.S. Wightman (Eds.) Lecture Notes in Physics 25, Springer Verlag Heidelberg 1973.Google Scholar
  4. 3.
    Glaser, V.: CERN prepring TH 1706 (1973), to appear in Commun. Math. Phys.Google Scholar
  5. 4.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics and all that. New York: W.A. Benjamin 1964.Google Scholar
  6. 5.
    Lüscher, M.: Mack, G.: Global conformal invariance in quantum field theory, preprint Bern (Aug. 1974), to be submitted to Commun. Math. Phys.Google Scholar
  7. 6.
    Wilson, K.: Phys. Rev. 179, 1499 (1969).Google Scholar
  8. 7.
    Hirai, P.: Proc. Japan. Acad. 38, 83, 258 (1962), 42, 323 (1965)Google Scholar
  9. 8.
    Warner, G.: Harmonic Analysis on Semi-simple Lie Groups, Vol. 1. Heidelberg: Springer Verlag 1972.Google Scholar
  10. 9.
    Dobrev, V.K., Petkova, V.B., Petrova, S.G., Todorov, I.T.: On exceptional integer points in the representation space of the pseudo orthogonal group O↑(2h+1,1) (in preparation).Google Scholar
  11. 10.
    Dieudonné, F.: Foundations of modern analysis. New York: Academic Press 1969.Google Scholar
  12. 11.
    Dobrev, V.K., Mack, G., Petkova, V.B., Petrova, S.G., Todorov, I.T., On Clebsch Gordan expansion for 0(2h+1,1). JINR preprint E2-7977, Dubna 1974.Google Scholar
  13. 12.
    Symanzik, K.: in: Lectures on High Energy Physics, Jaksic (ed.), Zagreb 1961, New York: Gordon and Breach 1965.Google Scholar
  14. 13.
    Ferrara, S., Mattioli, G., Rossi, G., Toller, M.: Nucl. Phys. B53, 366 (1973)Google Scholar
  15. 14.
    Rühl, W.: Commun. Math. Phys. 30, 287 (1973).Google Scholar
  16. 15.
    Polyakov, A.M., Non-Hamiltonian approach to the quantum field theory at small distances, preprint Chernogolovka. See also: Migdal, A.A., 4-dimensional soluble models of conformal field theory, preprint Chernogolovka 1972.Google Scholar
  17. 16.
    Todorov, I.T.: Conformal expansions for Euclidean Green functions. Trieste: Report IC/74/67 (1974).Google Scholar
  18. 17.
    Ferrara, S., Gatto, R., Grillo, A.F.: Lettere Nuovo Cimento 2, 1363 (1971); A12; 952 (1972); Nucl. Phys. B34, 349 (1971). Ferrara, S., Gatto, R., Grillo, A.F., Parisi, G.: Nucl. Phys. B49, 77 (l972); Schroer, B., Swieca, J.A. (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Mack
    • 1
    • 2
  1. 1.Institut für Theoretische Physik der Universität BernSwitzerland
  2. 2.Institute for Advanced StudyPrinceton

Personalised recommendations