Advertisement

Realization is continuously universal

  • Lee A. Carlson
Submitted Abstract
Part of the Lecture Notes in Computer Science book series (LNCS, volume 25)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bainbridge, E. S., A Unified Minimal Realization Theory, with Duality, Dissertation, Department of Computer and Communication Sciences, U. of Mich. (1972)Google Scholar
  2. 2.
    Chen, C. T., Introduction to Linear System Theory, Holt, Rinehart and Winston, (1970)Google Scholar
  3. 3.
    Goguen, J. A., "Realization is Universal," Math. Sys. Th. 6 (1973) 359–374CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    —, "Minimal Realization of Machines in Closed Categories," Bull. Amer. Math. Soc. 78 (1973) 777–783MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kalman, R. E., and Hautus, M. L. J., "Realization of Continuous-time Linear Dynamical Systems: Rigorous Theory in the Style of Schwartz," NRL-MRC Conference: ODE, Acad. Press (1972) 151–164Google Scholar
  6. 6.
    MacLane, S., Categories for the Working Mathematician, Springer-Verlag (1971)Google Scholar
  7. 7.
    Seebach, J. A., Jr., Seebach, L. A., and Steen, L. A., "What is a Sheaf," Amer. Math. Monthly, MAA 77 (1970) 681–703CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Lee A. Carlson
    • 1
    • 2
  1. 1.Information SciencesUniversity of ChicagoChicagoUSA
  2. 2.Information SciencesValparaiso University (on leave)ValparaisoUSA

Personalised recommendations