Advertisement

What can one learn from Lorentz models?

  • E. H. Hauge
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 31)

Keywords

Ergodic Theory Infinite System Phase Point Ergodic Property Microcanonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    K.M. CASE and P.F. ZWEIFEL, Linear Transport Theory, (AddisonWesley), Reading, Mass. (1967, Chap. 7MATHGoogle Scholar
  2. 2).
    See R. PEIERLS, this volume; R. KUBO this volume; W. KOHN and J.M. LUTTINGER, Phys. Rev. 108, 590 (1957).MathSciNetADSCrossRefGoogle Scholar
  3. 3).
    S. CHAPMAN and J.G. COWLING, Mathematical Theory of Non-Uniform Gases, (Cambridge University Press), London, 3rded. (1970).Google Scholar
  4. 4).
    M. BIXON, J.R. DORFMAN and K.C. MO Phys. Fluids 14, 1049 (1971) P. RESIBOIS, J. Stat. Phys. 2, 21 1970), and in Irreversibility in the Man y-Body Problem, J. Biel and J. Rae, eds.Plenum Press) New York, (1972)ADSMATHCrossRefGoogle Scholar
  5. 5).
    H.P. McKEAN Jr., J. Math. Phys. ul8, 547 (1967)MathSciNetADSCrossRefGoogle Scholar
  6. 6).
    E.H. HAUGE, Phys. Fluids, 13, 1201 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7).
    H. GRAD, Phys. Fluids, 8, 147 (1963).MathSciNetADSCrossRefGoogle Scholar
  8. 8).
    M.H. ERNST, E.H. HAUGE and J.M.J. VAN LEEUWEN, Phys. Rev. Letters 25, 1254 (1970); Phys. Rev. A4, 2055 (1971).ADSCrossRefGoogle Scholar
  9. 9).
    See, for example, J.A. McLENNAN, Phys. Fluids 8, 1580 (1965). I. KUSCER and M.M.R. WILLIAMS, Phys. Fluids 10, 1922 (1967). Ø.O. JENSSEN, Phys. Norvegica 6, 179 (1972).MathSciNetADSCrossRefGoogle Scholar
  10. 10).
    M.S. GREEN, J.Chem.Phys. 20, 1281 (1952); 22, 398 (1954). R. KUBO, J. Phys. Soc. Japan, 12, 570 (195; R. KUBO, this volume.MathSciNetADSCrossRefGoogle Scholar
  11. 11).
    N.G. VAN KAMPEN, Phys. Norvegica 5, 279 (1971).Google Scholar
  12. 12).
    A. EINSTEIN, Ann. Phys. 17, 549 (1905).MATHCrossRefGoogle Scholar
  13. 13).
    E.G.D. COHEN, Physica 28, 1025; 1045; 1061 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14).
    J.M.J. VAN LEEUWEN and A. WEIJLAND, Physica 36, 457 (1967); 38, 35 (1968).ADSCrossRefGoogle Scholar
  15. 15).
    W. HOEGY, thesis, University of Michigan, Ann Arbor, Mich. (1967).Google Scholar
  16. 16).
    E.H. HAUGE and E.G.D. COHEN, “Det F ysiske Seminar i Trondheim” No 7,(1968); J. Math. Phys. 10, 397 1969Google Scholar
  17. 17).
    J. WEINSTOCK, Phys. Rev. 132, 454 (1963); 140A, 460 (1965). J.R. DORFMAN and E.G.D. COHEN, Phys. Letters 16, 124 (1965), J. Math. Phys. 8, 282 (1967). R. GOLDMAN and E.A. FRIEMAN, Bull. Amer. Phys. Soc., 10, 531 (1965); J. Math.Phys. 1, 2153 (1966); 8, 1410 (1967).MathSciNetADSCrossRefGoogle Scholar
  18. 18).
    N.N. BOGOLIUBOV in Studies in Statistical Mechanics, vol. I, J. de Boer and G.E. Uhlenbeck, eds., (North-Holland), Amsterdam (1962).Google Scholar
  19. 19).
    K. KAWASAKI and I. OPPENHEIM, Phys. Rev. 139, A 1763 (1965).MathSciNetADSCrossRefGoogle Scholar
  20. 20).
    P. RESIBOIS and M.G. VELARDE, Physica 51, 541 (1971).ADSCrossRefGoogle Scholar
  21. 21).
    B.J. ALDER and T.E. WAINWRIGHT, Phys. Rev. Al, 18 (1970)ADSGoogle Scholar
  22. 22).
    J.R. DORFMAN and E.G.D. COHEN, Phys. Rev. Letters 25, 1257 (1970); Phys. Rev. A6, 776 (1972)ADSCrossRefGoogle Scholar
  23. 23).
    M.H. ERNST and A. WEIJLAND, Phys. Letters 34A, 39 (1971).ADSGoogle Scholar
  24. 24).
    Y. POMEAU, Phys. Rev. A3, 1174 (1971); J. Math. Phys. 12, 2286 (1971)ADSGoogle Scholar
  25. 25).
    L.P. KADANOFF and J. SWIFT Phys. Rev. 166, 89 (1968). K. KAWASAKI, Ann. Phys. (New York), 61, 1 (1970). R.A. FERRELL, Phys. Rev. Lett. 24, 1169 (1970).ADSCrossRefGoogle Scholar
  26. 26).
    H. VAN BEYEREN and E.H. HAUGE, Phys. Letters 39A, 397 (1972).ADSGoogle Scholar
  27. 27).
    W.W. WOOD and F. LADO, J. Comp. Phys. 7, 528 (1971).MathSciNetADSCrossRefGoogle Scholar
  28. 28).
    C. BRUIN, Phys. Rev. Letters 29, 1670 (1972).ADSCrossRefGoogle Scholar
  29. 29).
    Some important results on the ergodic properties of Lorentz models with convex scatterers (Example: Spheres. Counterexample: Square trees) are presented by J.L. Lebowitz in this volume.Google Scholar
  30. 30A).
    30)G. GALLAVOTTI, Phys. Rev. 185, 308 (1969).ADSCrossRefGoogle Scholar
  31. 31).
    H. GRAD in Handbuch der Phy sik, S. Flügge, ed. (Springer-Verlag), Berlin (1958), Vol. XII, p. 214.Google Scholar
  32. 32).
    H. VAN BEYEREN, private communication.Google Scholar
  33. 33).
    D.J. GATES, J.Math. Phys. 13, 1005 (1972); 13,1315 (1972).MathSciNetADSCrossRefGoogle Scholar
  34. 34).
    E.H. LIEB and E.H. HAUGE, to be published.Google Scholar
  35. 35).
    J.F. AARNES, to be publishedGoogle Scholar
  36. 36).
    J. HARDY and Y. POMEAU, J. Math. Phys. 13, 7 (1972), 13, 1042 (1972). J. HARDY, Y. POMEAU and 0. de PAZZIS, Phys. Rev. Letters 31, 276 (1973), J. Math. Phys. 14, 1746 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • E. H. Hauge
    • 1
  1. 1.University of TrondheimTrondheimNorway

Personalised recommendations