Ergodic theory and statistical mechanics

  • Joel L. Lebowitz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 31)


Brownian Motion Langevin Equation Brownian Particle Random Force Einstein Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. V.I. ARNOLD A.AVEZ, E godic Problems of Statistical Mechanics Benjamin. New York,1968.Google Scholar
  2. A.S. WIGHTMAN, in Statistical Mechanics at the turn of the Decade. ( E.G.D. Cohen, ed., M. Dekker, New York. 1971Google Scholar
  3. J.L. LEBOWITZ, “Hamiltonian Flows and Rigorous Results in Nonequilibrium Statistical Mechanics”. in Statistical Mechanics, New Concepts, New Problems New A pplications (S.A. Rice, K.F. Freed J. C. Light eds.).U. of Chicago Press, 1972.Google Scholar
  4. I. E. FARQUHAR, in Irreversibility in the Many-Body Problem (J. Biel and J. Rae, eds.), Plenum, New YorkGoogle Scholar
  5. J.L. LEBOWITZ and 0. PENROSE,“Modern Engodic Theory”, Phys. Today, Febr. 1973. p.23.Google Scholar
  6. J. FORD. “The Transition from Analytic Dynamics to Statistical Mechanics.” Advances in Chemical Physics (1973).Google Scholar
  7. O.E. LANFORD III, “Ergodic theory and approach to equilibrium for finite and infinite systems” contribution in Boltzmann Equations (Theory & Applications) Proceeding, Symposium, Vienna Sept. 1972. Springer-Verlag, 1973.Google Scholar
  8. Ya. G. SINAI. “Ergodic Theory”. ibid.Google Scholar
  9. S.G. BRUSH, Transport Theory and Stat. Phys., 1971, for history of ergodic hypothesis.Google Scholar
  10. 0. PENROSE, Foundations of Statistical Mechanics, Pergamon, Oxford, 1970.MATHGoogle Scholar

Anharmonic Oscillators-KAM theorem

  1. E. FERMI, J. PASTA and S. ULAM, Studies of Non-Linear Problems. Los Alamos Scient. Lab. Report-1940 (19555): also reprinted in Enrico Fermi: Collected Pagers, Volume II. University of Chicago Press, Chicagoage 987.Google Scholar
  2. M. HENON and C. HEILES, Astron. Journal, 69 73 (1964)MathSciNetADSCrossRefGoogle Scholar
  3. G. WALKER and J. FORD, Phys. Rev. ul188, 416 (1969)MathSciNetADSCrossRefGoogle Scholar
  4. J. FORD and G.H. LUNSFORD, Phys. Rev. A 1, 59 (1970)ADSGoogle Scholar
  5. G.M. ZASLAVSKY and B.V. CHIRIKOV, Usp. Fiz. Nauk 105, 3 (1971).Google Scholar

Mixing, K, and Bernoulli Systems

  1. J.W. GIBBS, Elementary Princip les in Statistical Mechanics, Yale U. Press, New Haven, (reprinted by Dover, New York, 1960)Google Scholar
  2. J. von NEUMANN, Annals of Math. 33 587 (1932)CrossRefGoogle Scholar
  3. E. HOPE. J. Math and Phys, 13, 51 (1934); Ergoden Theorie, Springer, Berlin (193'7)Google Scholar
  4. P.R. HALMOS, Measure Theory, Van Nostrand Reinhold, New York (1950)MATHGoogle Scholar
  5. P.R. HALMOS Lectures on Ergodic Theory, Chelsea, New York (1956).MATHGoogle Scholar
  6. A.N. KOLMOGOROV “Address to the 1954 International Congress of Mathematicians” (tränslated in R. Abrahams, Foundations of Mechanics, Benjamin, New York (1967) Appendix D).Google Scholar
  7. D.S. ORNSTEIN, “Bernoulli shifts with the same entropy are isomorphic”, Advances in Math. 4, 337 (1970).MathSciNetMATHCrossRefGoogle Scholar
  8. D.S. ORNSTEIN, “The isomorphism theorem for Bernoulli flows”, Advances in Math. 10, 124 (1973)MathSciNetMATHCrossRefGoogle Scholar
  9. D.S. ORNSTEIN, Ergodic Theory, Randomness, and Dynamical Systems Lecture notes from Stanford University.Google Scholar
  10. M. SMORODINSKY, Ergodic Theory, Entropy, Springer Lecture Notes 214 (1970).Google Scholar
  11. P. SHIELDS, The Theory of Bernoulli Shifts, University of Chicago Press.Google Scholar
  12. S. GOLDSTEIN, O.E. LANFORD and J.L. LEBOWITZ, “Ergodic Properties of Simple Model System with Collisions”, J. Math. Phys. 14, 1228 (1973)MathSciNetADSCrossRefGoogle Scholar

Hard spheres-finite Lorentz system

  1. Ya. G. SINAI, Sov. Math-Dokl. 4 1818 (1963); “Ergodicity of Boltzmann's Equations” in Statistical Mechanics Foundations and Applications (T.A. Bak. ed Benjamin, New York (1967)MathSciNetGoogle Scholar
  2. Ya. G. SINAI, “Dynamical systems with elastic reflections” Russ. Math. Surveys 25, 137 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  3. G. GALLOVOTTI and D.S. ORNSTEN. Comm. Math. Physics, to appear.Google Scholar

Infinite Systems

  1. S. GOLDSTEIN, “Ergodic Theory and Infinite Systems”, Thesis, Yeshiva University. N.Y. (1974)Google Scholar
  2. R. HAAG, D. KASTLER and E.B. TRYCH-POHLMEYER. Comm. Math. Phys., to appearGoogle Scholar
  3. K.L. VOLKOVYSSKII and Ya. G. SINAI, “Ergodic properties of an ideal gas with an infinite number of aegrees of freedom”, Funct. Anal. Appl. 5, 185 (1971)MathSciNetGoogle Scholar
  4. Ya. G. SINAI, “Ergodic properties of a gas of one-dimensional hard rods with an infinite number of degrees of freedom”, Funct. Anal. Appl. 6, 35 (1972).MATHCrossRefGoogle Scholar
  5. S. GOLDSTEIN and J.L. LEBOWITZ, “Ergodic Properties of an infinite system of particles moving independently in a periodic field”, Comm. Math. Phys., to appear.Google Scholar
  6. 0. DE PAZZIS, “Ergodic properties of a semi-infinite hard rods system”, Commun. Math. Phys. 22, 121 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  7. D. RELLE, Statistical Mechanics-Rigorous Results, Benjamin New York (1969)Google Scholar
  8. S. GOLDSTEIN, “Space-time ergodic properties of a systems of infinitely mans independent particles”, to appear.Google Scholar
  9. O.E. LANFORD and J.L. LEBOWITZ “Ergodic Properties of Harmonic Crystals”, to appear.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Joel L. Lebowitz
    • 1
  1. 1.Belfer Graduate School of ScienceYeshiva UniversityNew York

Personalised recommendations