Some simple remarks on the basis of transport theory

  • Rudolf Peierls
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 31)


Our discussion has been confined to a very simple class of transport problems. Apart from the exclusion of dense or strongly coupled systems, we have excluded the possibility of long-range interactions, as in plasmas and other dense systems, all cases of spatial inhomogeneity. Nevertheless the limited range of problems gave us an opportunity of examining some general basic principles, which are applicable much more generally than the particular problems considered.


Boltzmann Equation Elastic Collision Transport Problem Collision Time Collision Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BERMAN, R., 1951, Proc. Roy. Soc. A, 208, 90.ADSCrossRefGoogle Scholar
  2. CHESTER, G.V. and THELLUNG, A., 1959, Proc. Phys. Soc. 73, 745.ADSMATHCrossRefGoogle Scholar
  3. CHESTER, G.V., 1963, Reports on Progress in Physics 26, 411.ADSCrossRefGoogle Scholar
  4. EDWARDS, S.F., 1958, Phil. Mag. 3, 1020.ADSMATHCrossRefGoogle Scholar
  5. GREENWOOD, D.A., 1958, Proc. Phys. Soc. 71, 585.MathSciNetADSMATHCrossRefGoogle Scholar
  6. KUBO, R., 1956, Canad. J. Phys. 34, 1274.MathSciNetADSCrossRefGoogle Scholar
  7. — 1958, Lectures in Theoretical Physics, Boulder 1, 120.Google Scholar
  8. PAULI, W., 1928, Festschrift zum 60. Geburtstage Arnold Sommerfelds (Leipzig, Hirzel), p. 30.Google Scholar
  9. PEIERLS, R.E., 1929, Ann. der Physik, 3, 1055.ADSMATHCrossRefGoogle Scholar
  10. — 1955, Quantum Theory of Solids (Oxford, Clarendon Press).MATHGoogle Scholar
  11. POMERANCHUK, 1943, J. of Physics U.S.S.R. 7, 197.Google Scholar
  12. PRIGOGINE, I., 1962, Non-Equilibrium Statistical Mechanics (New York; Interscience).MATHGoogle Scholar
  13. RANNINGER, J., 1965, Phys. Rev. 140A, 2031.ADSCrossRefGoogle Scholar
  14. VAN HOVE, L., 1955, Physica 21, 517 and 901.MathSciNetMATHCrossRefGoogle Scholar
  15. — 1956, Physica 22 343.MathSciNetADSCrossRefGoogle Scholar
  16. VAN WIERINGEN, J.S., 1954, Proc. Phys. Soc. A, 67, 206.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Rudolf Peierls
    • 1
  1. 1.University of OxfordOxfordEngland

Personalised recommendations