Advertisement

Design of bioactive compounds

  • Everardus J. Ariëns
  • Anna-Maria Simonis
Conference paper
Part of the Topics in Current Chemistry Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 52)

Keywords

Drug Metabolism Bioactive Compound Drug Design Metabolic Inhibitor Depot Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Ariëns, E. J.: Drug design, Vol. I. New York: Academic Press 1971.Google Scholar
  2. 2).
    Ariëns, E. J.: Drug design, Vol. II. New York: Academic Press 1971.Google Scholar
  3. 3).
    Brodie, B. B., Cho, A. K., Krishna, G., Reid, W. D.: Drug metabolism in man: Past, present and future. Ann. N. Y. Acad. Sci. 179, 11 (1971).CrossRefGoogle Scholar
  4. 4).
    Gillette, J. R.: Comparative metabolism and the choice of experimental animals. In: The laboratory animal in drug testing (ed. A. Spiegel). Stuttgart: Gustav Fischer Verlag 1973.Google Scholar
  5. 5).
    Miller, J. A., Miller, E. C.: The metabolic activation of carcinogenic aromatic amines and amides. Prog. Exp. Tumor Res. 2, 273 (1969).Google Scholar
  6. 6).
    Miller, J. A., Miller, E. C.: Chemical carcinogenesis: Mechanisms and approaches to its control. J. Natl. Cancer Inst. 47, V (1971).Google Scholar
  7. 7).
    Miller, J. A., Miller, E. C.: Activation of carcinogenic aromatic amines and amides by N-hydroxylation in vivo. In: Carcinogenesis: A broad critique. Proc. 20th Annual Symp. on Fundamental Cancer Research. Houston 1966. Baltimore: Williams & Wilkins 1967.Google Scholar
  8. 8).
    Miller, E. C., Miller, J. A.: Studies on the mechanism of activation of aromatic amine and amide carcinogens to ultimate carcinogenic electrophilic reactants. Ann. N. Y. Acad. Sci. 163, 731 (1969).CrossRefGoogle Scholar
  9. 9).
    Miller, E. C., Miller, J. A.: Approaches to the mechanisms and control of chemical carcinogenesis. In: Environment and cancer. Proc. 24th Annual Symp. on Fundamental Cancer Research. Houston 1971. Baltimore: Williams & Wilkins 1972.Google Scholar
  10. 10).
    Grover, P.: How polycyclic hydrocarbons cause cancer. New Scientist 58, 685 (1973).Google Scholar
  11. 11).
    Heidelberger, Ch.: Current trends in chemical carcinogenesis. Fed. Proc. 32, 2154 (1973).Google Scholar
  12. 12).
    Miller, J. A.: Carcinogenesis by chemicals: An Overview — G. H. A. Clowes Memorial Lecture. 60th Annual Meeting of the Am. Ass. for Cancer Research. San Francisco 1969. Cancer Research 30, 559 (1970).Google Scholar
  13. 13).
    Ryser, H. J. P.: Chemical carcinogenesis. New Engl. J. Med. 285, 721 (1971).CrossRefGoogle Scholar
  14. 14).
    Uehleke, H.: Stoffwechsel von Arzneimitteln als Ursache von Wirkungen, Nebenwirkungen und Toxizität. In: Progress in drug research (ed. E. Jucker), Vol. 15. Basel: Birkhäuser Verlag 1971.Google Scholar
  15. 15).
    Weisburger, H. H., Weisburger, E. K.: Biochemical Formation and Pharmacological, Toxicological and Pathological Properties of Hydroxylamines and Hydroxamic Acids. Baltimore: Williams & Wilkins 1973.Google Scholar
  16. 16).
    Peters, R. A.: Biochemical lesions and lethal synthesis. London: Pergamon Press 1963.Google Scholar
  17. 17).
    Hollaender, A.: Chemical Mutagens, Vol. 1. New York-London: Plenum Press 1971.Google Scholar
  18. 18).
    Schleiermacher, E., Schroeder, T. M., Adler, I. D., Vrba, M., Vogel, F.: Mutationen durch chemische Einwirkung bei Säuger und Mensch. Dtsch. Med. Wochenschr. 92, 2343 (1967).Google Scholar
  19. 19).
    Vogel, F., Krüger, J., Ruhrborn, G., Schleiermacher, E., Schroeder, T. M.: Mutationen durch chemische Einwirkung bei Säuger und Mensch. Dtsch. Med. Wochenschr. 92, 2382 (1967).Google Scholar
  20. 20).
    Brodie, B. B., Reid, W. D., Cho, A. K., Sipes, G., Krishna, G., Gillette, J. R.: Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Nat. Acad. Sci. 68, 160 (1971).CrossRefGoogle Scholar
  21. 21).
    Clegg, D. J.: Teratology. Ann. Rev. Pharmacol. 11, 409 (1971).CrossRefGoogle Scholar
  22. 22).
    Gillette, J. R., Menard, R. H., Stripp, B.: Active products of fetal drug metabolism. Clin. Pharmacol. Ther. 14, 680 (1973).Google Scholar
  23. 23).
    Kleiss, E.: Probleme der Teratogenese. Dtsch. Med. Wochenschr. 92, 1507 (1967).Google Scholar
  24. 24).
    Brodie, B. B.: Enzymatic activation of foreign compounds to more potent or more toxic derivatives. In: Abstracts of Invited Presentations, 5th Int. Congr. Pharmacol. San Francisco 1972.Google Scholar
  25. 25).
    Lewin, R.: Is ageing part of the plan? New Scientist 60, 615 (1973).Google Scholar
  26. 26).
    Hahn von, H. P.: Primary causes of ageing: a brief review of some modern theories and concepts. Mechanisms of Ageing and Development 2, 245 (1973).CrossRefGoogle Scholar
  27. 27).
    Carr, E. A.: Drug Allergy. Pharmacol. Rev. 6, 365 (1954).Google Scholar
  28. 28).
    Parker, Ch. W.: The biochemical basis of an allergic drug response. Ann. N. Y. Acad. Sci. 123, 55 (1965).CrossRefGoogle Scholar
  29. 29).
    Thoburn, R., Johnson, J. E., Cluff, L. E.: Studies on the epidemiology of adverse drug reactions. JAMA 198, 111 (1966).CrossRefGoogle Scholar
  30. 30).
    Baer, R. L., Harber, L. C.: Photosensitivity induced by drugs. JAMA 192, 989 (1965).Google Scholar
  31. 31).
    Jansen, L. H.: Contact sensitivity to simple chemicals: The role of intermediates in the process of sensitization. Naturwissenschaften 51, 387 (1964).CrossRefGoogle Scholar
  32. 32).
    Reid, W. D., Christie, B., Krishna, G., Mitchell, J. R., Moskowitz, J., Brodie, B. B.: Bromobenzene metabolism and hepatic necrosis. Pharmacology 6, 41 (1971).Google Scholar
  33. 33).
    Mitchell, J. R., Jollow, D. J., Gillette, J. R., Brodie, B. B.: Drug metabolism as a cause of drug toxicity. Drug Metabolism and Disposition 1, 418 (1973).Google Scholar
  34. 34).
    Reid, W. D., Krishna, G.: Centrolobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons. Exp. Mol. Pathol. 18, 80 (1973).CrossRefGoogle Scholar
  35. 35).
    Gillette, J. R., Menard, R. H., Stripp, B.: Active products of fetal drug metabolism. Clin. Pharmacol. Ther. 14, 680 (1973).Google Scholar
  36. 36).
    Prescott, L. F., Swainson, C. P., Forrest, A. R. W., Newton, R. W., Wright, N., Matthew, H.: Successful Treatment of severe paracetamol overdosage with cysteamine. The Lancet I, 588 (1974).CrossRefGoogle Scholar
  37. 37).
    Ippen, H.: Mechanisms of photoallergic and phototoxic skin reactions. In: Research progress in organic, biological and medicinal chemistry, Vol. III, Part 2, (eds. U. Gallo and L. Santamaria). Amsterdam: North-Holland Publ. Company 1972.Google Scholar
  38. 38).
    Rodighiero, G., Musajo, L., Dall'Acqua, F., Marciani, S., Caporale, G., Ciavatta, I.: Mechanism of skin photosensitization by furocoumarins. Photoreactivity of various furocoumarins with native DNA and with ribosomal RNA. Biochim. Biophys. Acta 217, 40 (1970).Google Scholar
  39. 39).
    Wacker, A.: Molecular mechanisms of photodynamic compounds. In: Research progress in organic, biological and medicinal chemistry, Vol. III, Part 1, (eds. U. Gallo and L. Santamaria). Amsterdam: North-Holland Publ. Company 1972.Google Scholar
  40. 40).
    Pathak, M. A.: Photosensitivity to drugs. In: Drugs and enzymes, Vol. 4, (eds. B. B. Brodie, J. R. Gillette). Proc. 2nd Int. Pharmacol. Meeting. Prague 1963.Google Scholar
  41. 41).
    Ariëns, E. J.: Drug levels in the target tissue and effect. In: Clinical pharmacology and therapeutics. Proc. 2nd. Deer Lodge Conf. on Clinical Pharmacology. Hershey USA) 1973, in press.Google Scholar
  42. 42).
    Ariëns, E. J.: Drug Action: Target tissue, dose-response relationships, receptors. In: Pharmacology and pharmacokinetics. Proc. Conf. Pharmacokinetics: Problems and Perspectives. Washington 1972. New York: Plenum Publ. Company, in press.Google Scholar
  43. 43).
    Ariëns, E. J., Simonis, A. M.: Modulation of the bioavailability profile of drugs (bioactive compounds) by molecular manipulation. In: Proc. FEES Special Meeting on Industrial Aspects of Biochemistry. Dublin 1973. Amsterdam: North-Holland Publ. Company, in press.Google Scholar
  44. 44).
    Castro, J. A., De Ferreyra, E. C., De Castro, C. R., De Fenos, O. M., Sasame, H., Gillette, J. R.: Prevention of carbon tetrachloride-induced necrosis by inhibitors of drug metabolism — Further studies on their mechanism of action. Biochem. Pharmacol. 23, 295 (1974).CrossRefGoogle Scholar
  45. 45).
    Smolen, V. F., Turrie, B. O., Weigand, W. A.: Drug input optimization: Bioavailability-effected time-optimal control of multiple, simultaneous, pharmacological effects and their interrelationships. J. Pharm. Sci. 61, 1941 (1972).CrossRefGoogle Scholar
  46. 46).
    Schneller, G. H.: Status report on drug bio-availability. Am. J. Hosp. Pharm. 27, 485 (1970).Google Scholar
  47. 47).
    Wagner, J. G.: Biologic availability, determinant factor of therapeutic activity of drugs. Drug Intelligence and Pharmacy 7, 168 (1973).Google Scholar
  48. 48).
    Dittert, L. W., DiSanto, A. R.: The bioavailability of drug products. J. Am. Pharm. Ass. NS13, 421 (1973).Google Scholar
  49. 49).
    Ariëns, E. J.: Molecular pharmacology, a basis of drug design. In: Progress in drug research, Vol. 10, (ed. E. Jucker). Basel: Birkhäuser Verlag 1966.Google Scholar
  50. 50).
    Ariëns, E. J.: Drug design — Possibilities and limitations. Chimia 26, 355 (1972).Google Scholar
  51. 51).
    Ariëns, E. J.: A molecular approach to the modulation of pharmacokinetics: Modification of metabolic conversion by molecular manipulation. Pure and Applied Chemistry 19, 187 (1969).CrossRefGoogle Scholar
  52. 52).
    Hansch, C.: Quantitative structure — Activity relationships in drug design. In: Drug design, Vol. I, (ed. E. J. Ariëns). New York: Academic Press 1971.Google Scholar
  53. 53).
    Hansch, C., Dunn, W. J.: Linear relationships between lipophilic character and biological activity of drugs. J. Pharm. Sci. 61, 1 (1972).CrossRefGoogle Scholar
  54. 54).
    Hansch, C., Clayton, J. M.: Lipophilic character and biological activity of drugs II: The parabolic case. J. Pharm. Sci. 62, 1 (1973).CrossRefGoogle Scholar
  55. 55).
    Leo, A., Hansch, C., Elkins, D.: Partition coefficients and their uses. Chem. Rev. 71, 525 (1971).CrossRefGoogle Scholar
  56. 56).
    Lien, E. J.: Structure-absorption-distribution relationships: Their significance for drug design. In: Drug design, Vol. V, (ed. E. J. Ariëns). New York: Academic Press, in press.Google Scholar
  57. 57).
    Bücher, Th., Sies, H.: Inhibitors: Tools in cell research. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  58. 58).
    Hochster, R. M., Quastel, J. H.: Metabolic inhibitors, Vols. I–IV. New York: Academic Press 1963–1973.Google Scholar
  59. 59).
    Martin, G. J.: Biological antagonism. Philadelphia: Blakiston 1951.Google Scholar
  60. 60).
    Rhoads, C. P.: Antimetabolites and cancer. London: Bailey Bros. & Swinfen Ltd. 1955.Google Scholar
  61. 61).
    Webb, J. L.: Enzyme and metabolic inhibitors, Vols. I–III. New York: Academic Press 1963, 1966.Google Scholar
  62. 62).
    Wolstenholme, G. E. W., O'Connor, C. M.: Ciba Foundation Symposium on Amino Acids and Peptides with Antimetabolic Activity. London: J. & A. Churchill Ltd. 1958.Google Scholar
  63. 63).
    Wooley, D. W.: A study of antimetabolites. New York: Wiley 1952.Google Scholar
  64. 64).
    Langen, P.: Antimetabolite des Nucleinsäure-Stoffwechsels. Berlin: Akademie-Verlag 1968.Google Scholar
  65. 65).
    Balis, M. E.: Antagonists and nucleic acids. Amsterdam: North-Holland Publ. Company 1968.Google Scholar
  66. 66).
    Varley, A. B.: The generic inequivalence of drugs. JAMA 206, 1745 (1968).CrossRefGoogle Scholar
  67. 67).
    Levy, G.: The therapeutic implications of brand interchange. Am. J. Hosp. Pharm. 17, 756 (1960).Google Scholar
  68. 68).
    Ariëns, E. J.: Molecular pharmacology, Vol. I. New York: Academic Press 1964.Google Scholar
  69. 69).
    Baker, B. R.: Design of active-site-directed irreversible enzyme inhibitors. New York: Wiley 1967.Google Scholar
  70. 70).
    Baker, B. R.: Factors in the design of active-site-directed irreversible inhibitors. J. Pharm. Sci. 53, 347 (1964).CrossRefGoogle Scholar
  71. 71).
    Baker, B. R.: Specific irreversible enzyme inhibitors. Ann. Rev. Pharmacol. 10, 35 (1970).CrossRefGoogle Scholar
  72. 72).
    Baker, B. R.: Metabolite antagonism by enzyme inhibition. In: Medicinal chemistry, Vol. I. (ed. A. Burger). New York: Wiley 1970.Google Scholar
  73. 73).
    Kollonitsch, J., Barash, L., Kahan, F. M., Kropp, H.: New antibacterial agent via photofluorination of a bacterial cell wall constituent. Nature 243, 346 (1973).CrossRefGoogle Scholar
  74. 74).
    Post, L. C., Vincent, W. R.: A new insecticide inhibits chitin synthesis. Naturwissenschaften 60, 431 (1973).CrossRefGoogle Scholar
  75. 75).
    Editorial: Worms' enzyme differences exploited by chemotherapists. New Scientist 56, 685 (1972).Google Scholar
  76. 76).
    Sanderson, B. E.: Anthelmintics in the study of helminth metabolism. In: Chemotherapeutic agents in the study of Parasites. Symp. Brit. Soc. Parasitology, Vol. 11, (eds. A. E. R. Taylor and R. Miller) 1973.Google Scholar
  77. 77).
    Hitchings, G. H.: Antimetabolites and Chemotherapy: Integration of biochemistry and molecular manipulation. In: Chemotherapy of cancer. (ed. P. A. Plattner). Amsterdam: Elsevier 1964.Google Scholar
  78. 78).
    Gale, E. F.: Perspectives in chemotherapy. Brit. Med. J. 4, 33 (1973).Google Scholar
  79. 79).
    Dietschy, J. M. Wilson, J. D.: Regulation of cholesterol metabolism. New Engl. J. Med. 282, 1128 (1970).CrossRefGoogle Scholar
  80. 80).
    Gaunt, R., Steinetz, B. G., Chart, J. J.: Pharmacologic alteration of steroid hormone functions. Clin. Pharmacol. Ther. 9, 657 (1968).Google Scholar
  81. 81).
    Sobels, F. H.: Chemical mutagenesis and problems involved in the evaluation of environmental mutagens. In: Toxicology: Review and prospect, Vol. XIV. Proc. Eur. Soc. for the Study of Drug Toxicity, Utrecht 1972, (ed. W. A. M. Duncan). Amsterdam: Excerpta Medica 1973.Google Scholar
  82. 82).
    Tuchmann-Duplesis, H.: Drug teratogenicity. In: Toxicology: Review and prospect, Vol. XIV. Proc. Eur. Soc. for the Study of Drug Toxicity, Utrecht 1972, (ed. W. A. M. Duncan). Amsterdam: Excerpta Medica 1973.Google Scholar
  83. 83).
    Loubatières, A.: Utilisation de substances sulfamidées dans le traitement du diabète sucre. Therapie 10, 907 (1955).Google Scholar
  84. 84).
    Ribes, G., Mariani, M. M., Ribes, G., de Malbosc, H., Chapal, J.: Etude expérimentale d'un nouveau sulfamide hypoglycémiant particulièrement actif, le HB 419 ou glibenclamide. I. Action bêtacytotrope insulino-sécrétrice. Diabetologia 5, 1 (1969).CrossRefGoogle Scholar
  85. 85).
    Loubatières, A., Mariani, M. M.: Pharmacologie. — Étude pharmacologique et pharmacodynamique d'un sulfonylurée hypoglycémiant particulièrement actif, le glybenzyclamide. C. R. Acad. Sci. Paris 265, 643 (1967).Google Scholar
  86. 86).
    Brodie, B. B.: Of mice, microsomes and man. The Pharmacologist 6, 12 (1964).Google Scholar
  87. 87).
    Wijngaarden van, I., Soudijn, W.: Difenoxine (R 15 403), the active metabolite of diphenoxylate (R 1132). Arzneim.-Forsch. 22, 513 (1972).Google Scholar
  88. 88).
    Dvornik, D., Kraml, M., Dubuc, J.: Effect of 22,25-diazacholestanol on synthesis of cholesterol by rat liver homogenates. (29299). Proc. Soc. Exp. Biol. Med. 16, 537 (1964).Google Scholar
  89. 89).
    O'Brien, R. D.: Effects in plants. In: Toxic phosphorus esters. New York: Academic Press 1960.Google Scholar
  90. 90).
    Wegler, R., Eue, L.: Herbizide. In: Chemie der Pflanzenschutz-und Schädlingssbekämpfungsmittel, Vol. 2, (ed. R. Wegler). Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  91. 91).
    Crafts, A. S.: The chemistry and mode of action of herbicides. In: Advances in pest control research, Vol. I, (ed. R. L. Metcalf). New York: Interscience Publ., Inc. 1957.Google Scholar
  92. 92).
    Röhrborn, G.: Mutations in man and relevant methods for the routine screening of mutagens. In: Toxicology: Review and prospect, Vol. XIV. Proc. Eur. Soc. for the Study of Drug Toxicity, Utrecht 1972, (ed. W. A. M. Duncan). Amsterdam: Excerpta Medica 1973.Google Scholar
  93. 93).
    Editorial: Mutating bacteria spot carcinogenic chemicals. New Scientist 60, 167 (1973).Google Scholar
  94. 94).
    Newton, B. A.: Trypanocides as biochemical probes. In: Chemotherapeutic agents in the study of parasites. Symp. Brit. Soc. Parasitology, Vol. 11, (eds. A. E. R. Taylor and R. Muller) 1973.Google Scholar
  95. 95).
    Boyland, E., Williams, K.: An enzyme catalysing the conjugation of epoxides with glutathione. Biochem. J. 94, 190 (1965).Google Scholar
  96. 96).
    Oesch, F.: Mammalian epoxide hydrases: Inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305 (1973).Google Scholar
  97. 97).
    Evaluation and testing of drugs for mutagenicity: Principles and problems. Wld. Hlth. Org. techn. Rep. Ser. No. 482. Geneva 1971.Google Scholar
  98. 98).
    Elion, G. B.: Biochemistry and pharmacology of purine analogues. Fed Proc. 26, 898 (1967).Google Scholar
  99. 99).
    Brodie, B. B., Reid, W. D., Cho, A. K. Sipes, G., Krishna, G., Gillette, J. R.: Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Nat. Acad. Sci 68, 160 (1971).CrossRefGoogle Scholar
  100. 100).
    Editorial: Vitamin C stops carcinogenic chemicals being formed. New Scientist 58, 70 (1973).Google Scholar
  101. 101).
    Reynolds, E. S., Moslen, M. T.: Liver injury following halothane anesthesia in phenobarbital-pretreated rats. Biochem. Pharmacol. 23, 189 (1974).CrossRefGoogle Scholar
  102. 102).
    Mitchell, J. R., Jollow, D. J., Potter, W. Z., Davis, D. C., Gillette, J. R., Brodie, B. B.: Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. PharmacoL Exp. Ther. 187, 185 (1973).Google Scholar
  103. 103).
    Grover, P. L., Sims, P.: K-region epoxides of polycyclic hydrocarbons: Reactions with nucleic acids and polyribonucleotides. Biochem. Pharmacol. 22, 661 (1973).CrossRefGoogle Scholar
  104. 104).
    Ames, B. N., Sims, P., Grover, P. L.: Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens. Science 176, 47 (1972).CrossRefGoogle Scholar
  105. 105).
    Uehleke, H., Hellmer, K. H., Tabarelli-Poplawski, S.: Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro. Naunyn-Schmied. Arch. Pharmacol. 279, 39 (1973).CrossRefGoogle Scholar
  106. 106).
    Levine, B. B.: Immunochemical mechanisms involved in penicillin hypersensitivity in experimental animals and in human beings. Fed. Proc. 24, 45 (1965).Google Scholar
  107. 107).
    Kalow, W.: Pharmacogenetics. Heredity and the response to drugs. Philadelphia: W. B. Saunders Company 1962.Google Scholar
  108. 108).
    Pharmacogenetics. Wld. Hlth. Org. techn. Rep. Ser. No. 524. Geneva 1973.Google Scholar
  109. 109).
    Evans, D. A. P.: Genetic variations in the acetylation of isoniazid and other drugs. Ann. N. Y. Acad. Sci. 151, 723 (1968).Google Scholar
  110. 110).
    Vesell, E. S.: Pharmacogenetics. New Engl. J. Med. 287, 904 (1972).CrossRefGoogle Scholar
  111. 111).
    Reynolds, H. T.: Research advances in seed and soil treatment with systemic and nonsystemic insecticides. In: Advances in pest control research, Vol. II, (ed. R. L. Metcalf). New York: Interscience Publ., Inc. 1958.Google Scholar
  112. 112).
    Martin, E. W.: Hazards of medication. Philadelphia: J. B. Lippincott Company 1971.Google Scholar
  113. 113).
    Ariëns, E. J. Simonis, A. M.: The mechanisms of adverse drug reactions. In: Drug-induced diseases, Vol. 4, (eds. L. Meyler and H. M. Peck). Amsterdam: Excerpta Medica 1972.Google Scholar
  114. 114).
    Ariëns, E. J.: Reduction, of drug action by drug combination. J. Mondial de Pharmacie 12, 263 (1969).Google Scholar
  115. 115).
    Ariëns, E. J.: Reduction of drug action by drug combination. In: Progress in drug research, Vol. 14, (ed. E. Jucker). Basel: Birkhäuser Verlag 1970.Google Scholar
  116. 116).
    Beckett, A. H., Rowland, M.: Urinary excretion kinetics of amphetamine in man. J. Pharm. Pharmacol. 17, 628 (1965).Google Scholar
  117. 117).
    Turner, P., Young, J. H., Paterson, J.: Influence of urinary pH on the excretion of tranylcypromine sulphate. Nature 215, 881 (1967).CrossRefGoogle Scholar
  118. 118).
    Lassen, N. A.: Treatment of severe acute barbiturate poisoning by forced diuresis and alkalinisation of the urine. The Lancet II, 338 (1960).CrossRefGoogle Scholar
  119. 119).
    Bird, A. E., Marshall, A. C.: Correlation of serum binding of penicillins with partition coefficients. Biochem. Pharmacol. 16, 2275 (1967).CrossRefGoogle Scholar
  120. 120).
    Krieglstein, J.: Zur Plasmaproteinbindung von Arzneimitteln. Klin. Wochenschr. 47, 1125 (1969).CrossRefGoogle Scholar
  121. 121).
    Struller, T.: Progress in sulfonamide research. Prog. Drug Res. 12, 389 (1968).Google Scholar
  122. 122).
    Cymerman Craig, J., Dwyer, F. P., Glazer, A. N., Horning, E. C.: Tertiary Amine Oxide Rearrangements. I. Mechanism. J. Am. Chem. Soc. 83, 1871 (1961).CrossRefGoogle Scholar
  123. 123).
    Thuillier, M. J., Domenjoz, R.: Zur Pharmakologie den intravenösen Kurznarkose mit 2-Methoxy-4-allylphenoxyessigsäure-N,N-diäthylamid (G 29505). Anaesthesist 6, 163 (1957).Google Scholar
  124. 124).
    Sigg, E. B., Sigg, T. D., Brinling, J. C.: Autonomic actions of the diethylamide of 2-methoxy-4-allyl-phenoxyacetic acid (G 29505). A Non-Barbiturate Anesthetic. Arch. int. Pharmacodyn. 145, 70 (1963).Google Scholar
  125. 125).
    Thienpont, D., Niemegeers, C. J. E.: Propoxate (R 7464): A new potent anaesthetic agent in cold-blooded vertebrates. Nature 205, 1018 (1965).CrossRefGoogle Scholar
  126. 126).
    Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. I., Lenaerts, F. M.: Etomidate, R-(+)-ethyl-1-(α-methyl-benzyl)imidazole-5-carboxylate (R 16659), a potent, short-acting and relatively atoxic intravenous hypnotic agent in rats. Arzneim.-Forsch. 21, 1234 (1971).Google Scholar
  127. 127).
    Zaagsma, J.: Symposium “Anaesthetic and neuromuscular blocking drugs”. Chem. Wkbl. 68, 5 (1972).Google Scholar
  128. 128).
    Pointer, D. J., Wilford, J. B., Bishop, D. C.: Crystal structure of a novel curariform agent. Nature 239, 332 (1972).CrossRefGoogle Scholar
  129. 129).
    Bolger, L., Brittain, R. T., Jack, D., Jackson, M. R., Martin, L. E., Mills, J., Poynter, D., Tyers, M. B.: Short-lasting, competitive neuromuscular blocking activity in a series of azobis-arylimidazo-[1,2-α]-pyridinium dihalides. Nature 238, 354 (1972).CrossRefGoogle Scholar
  130. 130).
    Huyser, H. W.: Relation between the structure of detergents and their biological degradation. In: Original lectures. 3rd Int. Congr. of Surface Activity. Cologne. Vol. III. 1960.Google Scholar
  131. 131).
    Brooks, G. T.: The design of insecticidel chlorohydrocarbon derivatives. In: Drug design, Vol. IV, (ed. E. J. Ariëns). New York: Academic Press 1973.Google Scholar
  132. 132).
    Holan, G.: Rational design of degradable insecticides. Nature 232, 644 (1971).CrossRefGoogle Scholar
  133. 133).
    Beckett, A. H.: In: Enzymes and drug action, pp. 15 and 238, (eds. J. L. Mongar and A. V. S. de Reuck). London: Churchill 1962.Google Scholar
  134. 134).
    Levine, R. M., Clark, B. B.: Relationship between structure, and in vitro metabolism of various esters and amides in human serum. J. Pharmacol. exp. Ther. 113, 272 (1955).Google Scholar
  135. 135).
    Thomas, J., Stoker, J. R.: The effect of ortho substitution on the hydrolysis of benzoylcholine. J. Pharm. Pharmacol. 13, 129 (1961).Google Scholar
  136. 136).
    Bird, A. E., Nayler, J. H. C.: Design of penicillins. In: drug design Vol. II, (ed. E. J. Ariëns). New York: Academic Press 1971.Google Scholar
  137. 137).
    Karim, S. M. M., Carter, D. C., Bhana, D., Adaikan Ganesan, P.: Effect of orally administered prostaglandin E2 and its 15-methyl analogues on gastric secretion. Brit Med. J. 1, 143 (1973).Google Scholar
  138. 138).
    Amy, J. J., Jackson, D. M., Adaikan Ganesan, P., Karim, S. M. M.: Prostaglandin 15 (R) 15-methyl-E2 methyl ester for suppression of gastric acidity in gravida at term. Brit. Med. J. 4, 208 (1973).Google Scholar
  139. 139).
    Weeks, J. R., DuCharme, D. W., Magee, W. E., Miller, W. L.: The biological activity of the (15S)-15-methyl analogs of prostaglandins E2 and F. J. Pharmacol. Exp. Ther. 186, 67 (1973).Google Scholar
  140. 140).
    Lippmann, W., Seethaler, K.: Oral anti-ulcer activity of a synthetic prostaglandin analogue (9-Oxoprostanoic acid: AY-22, 469). Experientia 29, 993 (1973).CrossRefGoogle Scholar
  141. 141).
    Robert, A., Nylander, B., Andersson, S.: Marked inhibition of gastric secretion by two prostaglandin analogs given orally to man. Life Sci. 14, 553 (1974).CrossRefGoogle Scholar
  142. 142).
    Wain, R. L.: The behaviour of herbicides in the plant in relation to selectivity. In: The physiology and biochemistry of herbicides, (ed. L. J. Andus). London: Academic Press 1969.Google Scholar
  143. 143).
    Specifications for identity and purity of food additives. Vol. II: Food colors. Rome: Food and Agriculture Organization of the United Nations 1963.Google Scholar
  144. 144).
    Specifications for Identity and Purity of Food Additives. Volume I: Antimicrobial preservatives and antioxidants. Rome: Food and Agriculture Organization of the United Nations 1962.Google Scholar
  145. 145).
    Hansson, E., Schmiterlöw, G. C.: A comparison of the distribution, excretion and metabolism of a tertiary (promethazine) and a quaternary (Aprobit®) phenothiazine compound labelled with S 35. Arch Int. Pharmacodyn. Ther. 131, 309 (1961).Google Scholar
  146. 146).
    McIsaac, R. J., Koelle, G. B.: Comparison of the effects of inhibition of external, internal and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. Exp. Ther. 126, 9 (1959).Google Scholar
  147. 147).
    Havel, R. J., Kane, J. P.: Drugs and lipid metabolism. Ann. Rev. Pharmacol. 13, 287 (1973).CrossRefGoogle Scholar
  148. 148).
    Daehne von, W., Frederiksen, E., Gundersen, E., Lund, F., Mørch, P., Petersen, H. J., Roholt, K., Tybring, L., Godtfredsen, W. O.: Acyloxymethyl esters of ampicillin. J. Med. Chem. 13, 607 (1970).CrossRefGoogle Scholar
  149. 149).
    Launchbury, A. P.: Some recently introduced drugs. In: Progress in medicinal chemistry Vol. 7, (eds. G. P. Ellis and G. B. West). London: Butterworth 1970.Google Scholar
  150. 150).
    Naumann, P., Rosin, H.: Zur oralen Carbenicillin-Therapie mit Carindacillin. Dtsch. Med. Wochenschr. 98, 2200 (1973).CrossRefGoogle Scholar
  151. 151).
    Kawasaki, C.: Modified thiamine compounds. Vitamins and Hormones 21, 69 (1963).Google Scholar
  152. 152).
    Wagner, H., Wagner-Hering, E.: Lipophilic thiamine derivatives. Med. Klin. 62, 217 (1967).Google Scholar
  153. 153).
    Editorial: Garlic odor removed from new thiamine derivatives. Japan Medical Gazette November 1964.Google Scholar
  154. 154).
    Mitoma, C.: Metabolic disposition of thiamine tetrahydrofurfuryl disulfide in dog and man. Drug metabolism and Disposition 1, 698 (1973).Google Scholar
  155. 155).
    Imai, Y.: The antiscorbutic activity of some O-benzoyl derivatives of L-ascorbic acid in guinea pigs. Chem. Pharm. Bull. 14, 1045 (1966).Google Scholar
  156. 156).
    Schlör, H.: II. Spezieller Teil: Chemie der Fungizide. In: Chemie der Pflanzenschutzund Schädlingsbekämpfungsmittel, Vol. 2, (ed. R. Wegler). Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  157. 157).
    Richardson, A., Walker, H. A., Miller, I., Hansen, R.: Metabolism of methyl and benzyl esters of penicillin by different species. Proc. Exp. Biol. Med. 60, 272 (1945).Google Scholar
  158. 158).
    Kingstone, E.: The use of fluphenazine enanthate in an out-patient clinic. Int. J. Clin. Pharmacol. 1, 413 (1968).Google Scholar
  159. 159).
    Hirsch, S. R., Gaind, R., Rohde, P. D., Stevens, B. C., Wing, J. K.: Outpatient maintenance of chronic schizophrenic patients with long-acting fluphenazine: Double-blind Placebo Trial. Brit. Med. J. 1, 633 (1973).CrossRefGoogle Scholar
  160. 160).
    Adema, D. M. M., Meijer, G. M., Hueck, H. J.: The biological activity of pentachlorophenol esters — A preliminary note. Int. Biodetn. Bull. 3, 29 (1967).Google Scholar
  161. 161).
    Weck de, A. L.: Immunochemical mechanisms in drug allergy. In: Mechanisms in drug allergy, (eds. C. H. Dash and H. E. H. Jones). Edinburgh-London: Churchill Livingstone 1972.Google Scholar
  162. 162).
    Rosowsky, A.: Methotrexate analogs. 2. A facile method of preparation of lipophilic derivatives of methotrexate and 3′,5′-dichloromethotrexate by direct esterification. J. Med. Chem. 16, 1190 (1973).CrossRefGoogle Scholar
  163. 163).
    Johns, D. G., Farquhar, D., Chabner, B. A., Wolpert, M. K., Adamson, R. H.: Antineoplastic activity of lipid-soluble dialkyl esters of methotrexate. Experientia 29, 1104 (1973).CrossRefGoogle Scholar
  164. 164).
    Sharpe, A.: The physical properties of the carbon-fluorine bond. In: Carbon-fluorine compounds. A Ciba Foundation Symp. Amsterdam: Elsevier-Excerpta Medica 1972.Google Scholar
  165. 165).
    Brodie, B. B.: Enzyme activation of drugs and other foreign compounds to derivatives that produce tissue lesions. In: Pharmacology and the future of man, Vol. 2. Toxicological Problems. Proc. 5th Int. Congr. Pharmacology. San Francisco 1972. Basel: S. Karger 1973.Google Scholar
  166. 166).
    Reid, W. D.: Relationship between tissue necrosis and covalent binding of toxic metabolites of halogenated aromatic hydrocarbons. In: Pharmacology and the future of man, Vol. 2. Toxicological Problems. Proc. 5th Int. Congr. Pharmacology. San Francisco 1972. Basel: S. Karger 1973.Google Scholar
  167. 167).
    Freese, E.: Molecular mechanisms of mutations. In: Chemical mutagens. Principles and methods for their detection Vol. 1, (ed. A. Hollaender). New York: Plenum Press 1971.Google Scholar
  168. 168).
    Miller, E. C., Miller, J. A.: The mutagenicity of chemical carcinogens: Correlations, problems, and interpretations. In: Chemical mutagens. Principles and methods for their detection Vol. 1, (ed. A. Hollaender). New York: Plenum Press 1971.Google Scholar
  169. 169).
    Uehleke, H.: Mechanisms of methemoglobin formation by therapeutic and environmental agents. In: Pharmacology and the future of man, Vol. 2. Toxicological problems. Proc. 5th Int. Congr. Pharmacology. San Francisco 1972. Basel: S. Karger 1973.Google Scholar
  170. 170).
    Poirier, L. A., Weisburger, J. H.: N-Hydroxylation and carcinogenesis. In: Pharmacology and the future of man. Vol. 2. Toxicological Problems. Proc. 5th Int. Congr. Pharmacology. San Francisco 1972. Basel: S. Karger 1973.Google Scholar
  171. 171).
    Gillette, J. R.: Factors that affect the covalent binding and toxicity of drugs. In: Pharmacology and the future of man, Vol. 2. Toxicological Problems. Proc. 5th Int. Congr. Pharmacology. San Francisco 1972. Basel: S. Karger 1973.Google Scholar
  172. 172).
    Boyland, E.: The carcinogenic action of oxidation products of aromatic compounds. In: Biochemical aspects of antimetabolites and of drug hydroxylation, Vol. 16. 5th FEBS Symposium. Prague 1968, (ed. D. Shugar). London: Academic Press 1969.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Everardus J. Ariëns
    • 1
  • Anna-Maria Simonis
    • 1
  1. 1.Pharmacological InstituteUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations