Monadic program schemes under restricted classes of free interpretations

  • Werner Dilger
  • Peter Raulefs
Friday Afternoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 14)


Properties of value languages and translatability results of monadic program schemes under three restricted classes of interpretations (threshold counter, multiple threshold counter, and finite automaton interpretations) are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DR 74]
    Dilger, W., P. Raulefs, Monadic Program Schemes under Restricted Classes of Free Interpretations (in preparation).Google Scholar
  2. [GG 69]
    Ginsburg, S., S. Greibach, Abstract Families of Languages, MAMS:87 (1969), 1–32.Google Scholar
  3. [GL 73]
    Garland, S., D.C. Luckham, Program Schemes, Recursion Schemes, and Formal Languages, JCSS: 7 (1973), 119–160.Google Scholar
  4. [H 70]
    Hewitt, C., More Comparative Schematology, M.I.I. A.I-Memo No. 207 (Aug. 1970).Google Scholar
  5. [LPP 70]
    Luckham, D.C., D.M.R. Park, M.S. Paterson, On Formalized Computer Programs, JCSS: 4 (1970), 220–249.Google Scholar
  6. [PH 70]
    Paterson, M.S., C. Hewitt, Comparative Schematology, M.I.I. A.I.-Memo No. 201 (Nov. 1970)Google Scholar
  7. [S 71]
    Strong, H.R., Translating Recursion Equations into Flow Charts, JCSS: 5 (1971), 254–285.Google Scholar
  8. [SS 63]
    Shepherdson, J.C., H.E. Sturgis, Computability of Recursive Functions, JACM: 10 (1963), 217–255.CrossRefGoogle Scholar
  9. [WS 73]
    Walker, S.A., H.R. Strong, Characterisations of Flowchartable Recursions, JCSS: 7 (1973), 404–447.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Werner Dilger
    • 1
  • Peter Raulefs
    • 1
  1. 1.Institut für Informatik IUniversität KarlsruheKarlsruhe 1Fed. Rep. Germany

Personalised recommendations