Advertisement

Trade-off between the use of nonterminals, codings and homomorphisms in defining languages for some classes of rewriting systems

  • A. Ehrenfeucht
  • G. Rozenberg
Friday Morning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 14)

Keywords

Developmental System Sentential Form Formal Language Theory Nonterminal Symbol Enumerable Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Blattner].
    M. Blattner, Sentential forms of context-free grammars, Ph. D. Thesis, U.C.L.A., 1973.Google Scholar
  2. [Chomsky, a].
    N. Chomsky, Three models for the description of language, IRE Trans. Inf. Theory, vol. I T2, 113–124, 1956.CrossRefGoogle Scholar
  3. [Chomsky, b].
    N. Chomsky, Syntactic Structures, Mouton and Company, the Hague, 1957.Google Scholar
  4. [Ehrenfeucht and Rozenberg, a].
    A. Ehrenfeucht and G. Rozenberg, The equality of E0L languages and codings of OL languages, to appear in International Journal of Computer Mathematics.Google Scholar
  5. [Ehrenfeucht and Rozenberg, b].
    A. Ehrenfeucht and G. Rozenberg, Non-terminals versus homomorphisms in defining languages for some classes of rewriting systems, to appear in Acta Informatica.Google Scholar
  6. [Ginsburg and Greibach].
    S. Ginsburg and S. Greibach, Abstract families of languages. Memoirs of the AMS, 87, 1–32, 1969.Google Scholar
  7. [Herman and Rozenberg].
    G.T. Herman and G. Rozenberg, Developmental systems and languages, North-Holland Publ. Co., to appear.Google Scholar
  8. [Lindenmayer].
    A. Lindenmayer, Mathematical models for cellular interactions in development, Parts I and II, Journal of Theor. Biol., v. 18, 280–315, 1968.CrossRefGoogle Scholar
  9. [Lindenmayer and Rozenberg].
    A. Lindemayer and G. Rozenberg, Developmental systems and languages, Proc. IVth ACM Symp. Theory of Comp., 1972.Google Scholar
  10. [Nielsen, Rozenberg, Salomaa and Skyum, a].
    M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum, Nonterminals, homomorphisms and codings in different variations of OL systems. Part I. Deterministic systems, University of Aarhus, Dept. of Computer Science Technical Report No. PB-21.Google Scholar
  11. [Nielsen, Rozenberg, Salomaa and Skyum, b].
    M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum, Nonterminals, homomorphisms and codings in different variations of OL systems. Part II. Nondeterministic systems, University of Aarhus, Dept. of Computer Science Technical Report No. PB-21.Google Scholar
  12. [Paz and Salomaa].
    A. Paz and A. Salomaa, Integral sequential word function and growth equivalence of Lindenmayer systems, Inf. and Control, to appear.Google Scholar
  13. [Rozenberg, a].
    G. Rozenberg, TOL systems and languages, Inf. and Control. November, 1973.Google Scholar
  14. [Rozenberg, b].
    G. Rozenberg, Extension of tables OL-systems and languages, Internatl. J. Comp. and Inf. Sciences, vol. 2, 311–336, 1973.CrossRefGoogle Scholar
  15. [Rozenberg and Doucet].
    G. Rozenberg and P. Doucet, On OL languages, Inf. and Control, vol. 19, 302–318, 1971.CrossRefGoogle Scholar
  16. [Rozenberg and Wood].
    G. Rozenberg and D. Wood, Generative models for parallel processes, Mc Master Univ., Comp. Science Techn. Rep. No. 73/6, 1973.Google Scholar
  17. [Salomaa, a].
    A. Salomaa, On sentential forms of context-free grammars, Acta Informatica, vol. 2, 40–49, 1973.CrossRefGoogle Scholar
  18. [Salomaa, b].
    A. Salomaa, Formal languages, Academic Press, 1973.Google Scholar
  19. [Salomaa, c].
    A. Salomaa, On some recent problems concerning developmental languages, lecture at the Conference on formal languages and automata, Bonn, July 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • A. Ehrenfeucht
    • 1
  • G. Rozenberg
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderU.S.A.
  2. 2.Institute of MathematicsUniversity of UtrechtUtrecht - De UithofThe Netherlands
  3. 3.Department of MathematicsUniversity of Antwerp, UIAWilrijkBelgium

Personalised recommendations