Advertisement

Flow computations with accurate space derivative methods

  • Jenö Gazdag
Mecanique Des Fluides Fluids Mechanics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11)

Abstract

This paper is concerned with the numerical solution of partial differential equations describing fluid flow problems in real space and in phase space. One important goal is to show conclusively that the Accurate Space Derivative methods can be used with success for solving such problems numerically. We describe a method for the numerical solution of the Korteweg-de Vries-Burgers equation. We show numerically that the solution of this equation evolves asymptotically into a steady shock wave with monotonic and oscillatory profile. We present numerical solutions of the Vlasov-Poisson system of equations which describes the motion of an ideal incompressible fluid in phase space. These problems are related to longitudinal oscillations in two- and three-dimensional phase space.

References

  1. 1.
    Armstrong, T.P., Harding, R.C., Knorr, G., and Montgomery, D. Methods in Computational Physics, 9, pp. 30–84, Academic Press, New York (1970).Google Scholar
  2. 2.
    Bekefi, G. Radiation Processes in Plasmas, p. 238, Wiley, New York (1966).Google Scholar
  3. 3.
    Berk, H.L., and Roberts, K.V. Methods in Computational Physics, 9, pp. 87–134, Academic Press, New York (1970).Google Scholar
  4. 4.
    Bernstein, I.B. Phys. Rev., 109, p. 10, (1958).Google Scholar
  5. 5.
    Canosa, J., Gazdag, J., Fromm, J.E., and Armstrong, B.H. Phys. Fluids, 15, p. 2299 (1972).Google Scholar
  6. 6.
    Canosa, J., and Gazdag, J. Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, Berkeley, California, p. C9, July 16–18, 1973.Google Scholar
  7. 7.
    Canosa, J., and Gazdag, J. Asymptotic Behavior of Nonlinear Vlasov Plasmas, submitted to Phys. Fluids.Google Scholar
  8. 8.
    Canosa, J., Gazdag, J., and Fromm, J.E. The Recurrence of the Initial State in the Numerical Solution of the Vlasov Equation, submitted to J. Comp. Phys. Google Scholar
  9. 9.
    Davidson, R.C. Methods in Nonlinear Plasma Theory, Academic Press (1972), Chapter 4.Google Scholar
  10. 10.
    Fromm, J.E. IBM J. Res. Dev. 15, p. 186 (1971).Google Scholar
  11. 11.
    Gazdag, J. Proc. Fourth Conference on Numerical Simulation of Plasmas, Washington, D.C., p. 665, Nov. 2,3, 1970.Google Scholar
  12. 12.
    Gazdag, J. Numerical Convective Schemes Based on Accurate Space Derivatives, to be published in J. Comp. Phys.Google Scholar
  13. 13.
    Gazdag, J. Proceedings of the 1973 Summer Computer Simulation Conference, Montreal, pp. 40–45, July 17–19, 1973.Google Scholar
  14. 14.
    Gazdag, J., and Canosa, J. Numerical Solution of Fisher's Equation, to be published in the J. of Applied Probability.Google Scholar
  15. 15.
    Gazdag, J., and Canosa, J. Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, Berkeley, California, p. C8, July 16–18, 1973.Google Scholar
  16. 16.
    Gitomer, S.J. Phys. Fluids 14, p. 2234 (1971).Google Scholar
  17. 17.
    Grad, H., and Hu, P.N. Phys. Fluids 10, p. 2596 (1967).Google Scholar
  18. 18.
    Jeffrey, A., and Kakutani, T. SIAM Review 14, p. 582 (1972).Google Scholar
  19. 19.
    Johnson, R.S. Phys. Fluids 15, p. 1693 (1972).Google Scholar
  20. 20.
    Johnson, R.S. J. Fluid Mech. 42, p. 49 (1970).Google Scholar
  21. 21.
    Lewis, H.R. Phys. Fluids 15, p. 103 (1972).Google Scholar
  22. 22.
    Morse, R.L. Methods in Computational Physics, 9, pp. 213–239, Academic Press, New York (1970).Google Scholar
  23. 23.
    Orszag, S.A. J. Fluid Mech. 49, p. 75, Part 1 (1971).Google Scholar
  24. 24.
    Orszag, S.A. Stud. in Appl. Math. 50, p. 293 (1971).Google Scholar
  25. 25.
    Orszag, S.A. Stud. in Appl. Math. 51, p. 253 (1972).Google Scholar
  26. 26.
    Richtmeyer, R.D., and Morton, K.W. Difference Methods for Initial-Value Problems, Interscience Publishers, Second Edition (1967).Google Scholar
  27. 27.
    Sagdeev, R.Z., and Galeev, A.A. Nonlinear Plasma Theory, (Revised and Edited by T.M. O'Neil and D.L. Book), W.A. Benjamin, Inc., Chapter II (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Jenö Gazdag
    • 1
  1. 1.International Business Machines Corporation Palo Alto Scientific CenterPalo AltoUSA

Personalised recommendations