Representation of Banach lattices

  • Alain Goullet de Rugy
Course Mathematics
Part of the Lecture Notes in Physics book series (LNP, volume 29)


Banach Lattice Positive Element Riesz Space Order Unit Dual Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. GOULLET dE RUGY. frLa théorie des cônes biréticulés. Ann. Inst. Fourier (Grenoble), 21 (4), 1–64, 1971Google Scholar
  2. [2]
    A. GOULLET dE RUGY. La structure ideale des M-espaces. J. Math. Pures et Appl. 51, 331–373, 1972Google Scholar
  3. [3]
    E.B. DAVIES. The Choquet theory and representation of ordered Banach spaces. Illinois J. Math., 13, 176–187, 1969Google Scholar
  4. [4]
    S. KAKUTANI. Concrete representation of abstract M-spaces. Ann. of Math. 42, 994–1024, 1941Google Scholar
  5. [5]
    S. KAKUTANI. Concrete representation of abstract L-spaces and the mean ergodic theorem. Ann. of Math. 42, 523–537, 1941Google Scholar
  6. [6]
    W.A.S. LUXEMBURG and A.C. ZAANEN. Riesz spaces. Vol. I, North Holland, Amsterdam, London 1971Google Scholar
  7. [7]
    H.H. SCHAEFER. On the representation of Banach lattices by continuous numerical functions. Math. Z. 125, 215–232, 1972CrossRefGoogle Scholar
  8. [8]
    B.Z. VULIKH. Introduction to the theory of partially ordered spaces. Moscow 1961 (English translation, Groningen 1967)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Alain Goullet de Rugy
    • 1
  1. 1.Equipe d'AnalyseUniversité de Paris VIParis

Personalised recommendations