Orderings of vector spaces

  • H. H. Schaefer
Course Mathematics
Part of the Lecture Notes in Physics book series (LNP, volume 29)


Boolean Algebra Vector Lattice Topological Vector Space Order Ideal Order Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Alfsen, E.M., Compact Convex Sets and Boundary Integrals. Springer-Verlag, Berlin-Heidelberg-New York 1971.Google Scholar
  2. [DS]
    Dunford, N. and J.T. Schwartz, Linear Operators. Vol. I. Interscience Publ. 4th print, New York 1967.Google Scholar
  3. [J]
    Jameson, G., Ordered Linear Spaces Springer Lecture Notes No, 141, 1970.Google Scholar
  4. [LZ]
    Luxemburg, W.A.J. and A.C. Zaanen, Riesz Spaces I. North-Holland Publ. Co., Amsterdam-London 1971.Google Scholar
  5. [P]
    Peressini, A.L., Ordered Topological Vector Spaces. Harper and Row, New York-Evanston-London 1967.Google Scholar
  6. [S1]
    Schaefer, H.H., Topological Vector Spaces. 3rd print. Springer-Verlag, Berlin-Heidelberg-New York 1971.Google Scholar
  7. [S2]
    Schaefer, H.H., Banach Lattices and Positive Operators. Springer-Verlag (in preparation).Google Scholar
  8. [V]
    Vulikh, B.Z., Introduction to the Theory of Partially Ordered Spaces. (Engl. Transl.) Wolters-Noordhoffs, Groningen 1967.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. H. Schaefer
    • 1
  1. 1.Mathematisches Institut der Universität TübingenTübingenGermany

Personalised recommendations