Advertisement

The empirical logic approach to the physical sciences

  • D. J. Foulis
  • C. H. Randall
Course Physics
Part of the Lecture Notes in Physics book series (LNP, volume 29)

Keywords

Operational Logic Quantum Logic Transition Vector Orthomodular Lattice Physical Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Edwards, The operational approach to algebraic quantum theory I, Commun. Math. Phys. 16 (1970) 207–230.CrossRefGoogle Scholar
  2. 2.
    D.J. Foulis and C.H. Randall, Conditioning maps on orthomodular lattices, Glasgow Math. J. 12 Part 1 (1971) 35–42.Google Scholar
  3. 3.
    — —, Operational statistics I, basic concepts, J. Math. Phys. 13 NO. 11 (1972) 1667–1675.CrossRefGoogle Scholar
  4. 4.
    —, The stability of pure weights under conditioning, to appear in Glasgow Math. J.Google Scholar
  5. 5.
    R.J. Greechie, Orthomodular lattices admitting no states, J. Combinatorial Theory 10 (1971) 119–132.CrossRefGoogle Scholar
  6. 6.
    R.J. Greechie and F. Miller, On structures related to states on an empirical logic I, weights on finite spaces, Kansas State University mimeographed notes, 1969.Google Scholar
  7. 7.
    B. Jeffcott, The center of an orthologic, J. Symbolic Logic 37 NO. 4 (1972) 641–645.Google Scholar
  8. 8.
    G. Lüdders, Über die Zustandänderung durch den Messprozess, Ann. Physik 8 (1951) 322–328.Google Scholar
  9. 9.
    B. Mielnik, Theory of filters, Commun. Math. Phys. 15 (1969) 1–46.CrossRefGoogle Scholar
  10. 10.
    J.C.T. Pool, Baer -semigroups and the logic of quantum mechanics, Commun. Math. Phys. 9 (1968) 118–141.CrossRefGoogle Scholar
  11. 11.
    C.H. Randall and D.J. Foulis, An approach to empirical logic, Amer. Math. Monthly 77 (1970) 363–374.Google Scholar
  12. 12.
    — —, Lexicographic orthogonality, J. Combinatorial Theory Ser. A 11 (1971) 157–162.Google Scholar
  13. 13.
    — —, States and the free orthogonality monoid, Math Systems Theory 6 No. 3 (1972) 268–276.CrossRefGoogle Scholar
  14. 14.
    —, Operational statistics II, manuals of operations and their logics, scheduled to appear J. Math. Phys. 14 Google Scholar
  15. 15.
    R.J. Weaver, The conjunctive property in the free orthogonality monoid, Mount Holyoke College mimeographed notes, (1971).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. J. Foulis
    • 1
  • C. H. Randall
    • 1
  1. 1.Department of Mathematics & StatisticsUniversity of MassachusettsAmherstU. S. A.

Personalised recommendations