Measuring and preparing processes

  • G. Ludwig
Course Physics
Part of the Lecture Notes in Physics book series (LNP, volume 29)


Uniform Structure Collision Operator Order Interval Registration Procedure Macroscopic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ludwig,G., ‘Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens', Lecture Notes in Physics, volume 4, Springer-Verlag, Berlin and Heidelberg (1970). A second improved edition is in preparation.Google Scholar
  2. [2]
    Stolz,P.,'Attempt of an Axiomatic Foundation of Quantum Mechanics and More General Theories,VI’ Commun.Math.Phys. 23, 117–126 (1971).CrossRefGoogle Scholar
  3. [3]
    Ludwig,G.,'A physical interpretation of an axiom within an axiomatic approach to quantum mechanics and a new formulation of this axiom as a general covering condition', Notes in Math.Phys. 1 (Marburg 1971).Google Scholar
  4. [4]
    Ludwig,G.,'An Improved Formulation of Some Theorems and Axioms in the Axiomatic Foundation of the Hilbert Space Structure of Quantum Mechanics',Commun.Mathem.Phys. 26, 78–86 (1972)CrossRefGoogle Scholar
  5. [5]
    Neumann,H. ‘Classical Systems andObservables in Quantum Mechanics', Commun.Math.Phys. 23, 100–116 (1971)CrossRefGoogle Scholar
  6. [6]
    Ludwig,G., ‘Transformationen von Gesamtheiten und Effekten', Notes in Math.Phys. 4 (Marburg 1971).Google Scholar
  7. [7]
    Lanz,L., Ramella,G. ‘On the Deduction of a Markoffian Master Equation', Physica 44, 499–531 (1969).CrossRefGoogle Scholar
  8. [8]
    Lanz,L., Lugiato,L.A. ‘On the Asymptotic-Behaviour of the Solutions of the Liouville-von Neumann Equation', Physica 44, 532–554 (1969).CrossRefGoogle Scholar
  9. [9]
    Lanz,L., Lugiato,L.A. ‘A Rigorous Approach to a Markoffian Master Equation', Physica 47, 345–372 (1970).CrossRefGoogle Scholar
  10. [10]
    Lanz,L., Lugiato,L.A., Ramella,G. ‘On the Existence of Independent Subdynamics in Quantum Statistics', Physica 54, 1, 94–136 (1971)CrossRefGoogle Scholar
  11. [11]
    For other literature see the articles of Prosperi and Lanz in this volume.Google Scholar
  12. [12]
    Prosperi,G.M. ‘Macroscopic Physics, Quantum Mechanics and Quantum Theory of Measurement’ Proceedings of the Conference Quantum Theory and Beyond, (Cambridge 1968).Google Scholar
  13. [13]
    Lanz,L., Prosperi,G.M., Sabbadini,A. ‘Time Scales and the Problem of Measurement in Quantum Mechanics'. Nuovo Cimento B2, 184 (1971).Google Scholar
  14. [14]
    Hepp,K. ‘Quantum Theory of Measurement and Macroscopic Observables', Helv.Phys.Acta 45, 237–248 (1972)Google Scholar
  15. [15]
    For other Literature see the article of Prosperi in this volume.Google Scholar
  16. [16]
    G.Ludwig, ‘Meß-and Präparierprozesse', Notes in Math.Phys. 6 (Marburg 1972).Google Scholar
  17. [17]
    G.Ludwig, ‘Makroskopische Systeme und Quantenmechanik', Notes in Math.Phys. 5 (Marburg 1972).Google Scholar
  18. [18]
    G.Ludwig, ‘Einführung in die Grundlagen der Theoretischen Physik (four volumes, volume 1 and 2 in print), Bertelsmann Universitätsverlag, Düsseldorf.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • G. Ludwig
    • 1
  1. 1.Fachbereich Physik der Universität MarburgMarburgGermany

Personalised recommendations