The structure of ordered Banach spaces in axiomatic quantum mechanics

  • H. Neumann
Course Physics
Part of the Lecture Notes in Physics book series (LNP, volume 29)


Separable Hilbert Space Orthomodular Lattice Decision Effect Order Unit Axiomatic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Ludwig, Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur durch Hauptsätze des Messens. Berlin, Heidelberg, New York 1970Google Scholar
  2. [2]
    G. Ludwig, An improved formulation of some theorems and axioms in the axiomatic foundation of the Hilbert space structure of quantum mechanics. Commun. Math. Phys. 26, 1972Google Scholar
  3. [3]
    A.J. Ellis, Order Ideals in Ordered Banach Spaces, this volumeGoogle Scholar
  4. [4]
    G. Ludwig, A Physical Interpretation of an Axiom within an Axiomatic Approach to Quantum Mechanics and a New Formulation of this Axiom as a General Covering Condition. Notes in Math.Phys. 1, Marburg 1971Google Scholar
  5. [5]
    P. Stolz, Attempt of an Axiomatic Approach of Quantum Mechanics and More General Theories VI. Commun. Math. Phys. 23 (1971)Google Scholar
  6. [6]
    V.S. Varadarajan, Geometry of Quantum Theory I, Princeton, New Jersey 1968Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. Neumann
    • 1
  1. 1.Fachbereich Physik der Universität MarburgMarburgGermany

Personalised recommendations