Ordered normed tensor products

  • Gerd Wittstock
Course Mathematics
Part of the Lecture Notes in Physics book series (LNP, volume 29)


Normed Space Banach Lattice Bilinear Mapping Order Unit Riesz Decomposition Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behrends E. and Wittstock G.: Tensorprodukte kompakter konvexer Mengen. Inventiones math. 10 251–266 (1970)CrossRefGoogle Scholar
  2. 2.
    Behrends E. and Wittstock G.: Tensorprodukte und Simplexe. Inventiones math. 11, 188–198 (1970)CrossRefGoogle Scholar
  3. 3.
    Davies E.B., Vincent-Smith G.F.: Tensor products, infinite products and projective limits of Choquet simplexes. Math. Scand. 22,145–164 (1968)Google Scholar
  4. 4.
    Davies E.B.: The structure and ideal theory of the predual of a Banach lattice. Trans. Amer. Math. Soc. 131, 544–555 (1968)Google Scholar
  5. 5.
    Fremlin D.H.: Tensor products of archimedian vector lattices. Amer. Journal Math. 94, 777–798 (1972)Google Scholar
  6. 6.
    Hulanicki A. and Phelps R.R.: Some applications of tensor products of partially ordered spaces. J. Functional Analysis 2, 177–201 (1968)CrossRefGoogle Scholar
  7. 7.
    Lazar, A.J.: Affine products of simplexes. Math. Scand. 22, 165–175 (1968)Google Scholar
  8. 8.
    Namioka. F., Phelps R.R.:Tensor products of compact convex sets. Pacific J. Math. 31,469–480 (1969)Google Scholar
  9. 9.
    Ng. Kung-Fu: On a computation rule for polars. Math. Scand. 26, 14–16 (1970)Google Scholar
  10. 10.
    Peressini A.L.:Ordered topological vector spaces. New York, Evanston and London: Harper & Row: 1967Google Scholar
  11. 11.
    Peressini A.L and Sherbert D.R.:Ordered topological tensor products. Proc. London Math. Soc. 19, 177–190 (1969)Google Scholar
  12. 12.
    Popa N.: Produit tensoriels ordonnés. Rev. Roumani Math. Pures et Appl. 13, 235–246 (1968)Google Scholar
  13. 13.
    Schaefer H.H.: Topological vector spaces. Berlin-HeidelbergNew York, Springer: 1971Google Scholar
  14. 14.
    Schaefer H.H.:Normed tensor products of Banach lattices. Israel J. Math. 13, 400–415 (1973)Google Scholar
  15. 15.
    W.F. Stinespring: Positive functions on Cu*-algebras. Proc. Amer. Math. Soc. 6, 211–216 (1955)Google Scholar
  16. 16.
    Wittstock G.:Choquet Simplexe und nukleare Räume. Inventiones math. 15, 251–258 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Gerd Wittstock
    • 1
  1. 1.Fachbereich Mathematik der Universität des SaarlandesSaarbrückenGermany

Personalised recommendations