Low-valent silicon

Conference paper
Part of the Topics in Current Chemistry Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 50)


Electron Spin Resonance Electron Spin Resonance Spectrum Force Constant Band System Rotational Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Bürger, H.: Die Bindungsverhältnisse am Siliciumatom. In: Fortschr. Chem. Forsch. 9, pp. 1–59. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  2. 2).
    Ebsworth, E. A. V.: Physical basis of the chemistry of the group IV elements. In: The bond to carbon (ed. A. E. MacDiamid). New York: M. Dekker INC. 1968.Google Scholar
  3. 3).
    Herzberg, G.: Molecular spectra and molecular structure I. Spectra of diatomic molecules. New York: Van Nostrand, 1950.Google Scholar
  4. 4).
    Herzberg, G., Lagerquist, A., McKenzie, B. J.: Absorption spectrum of SiH in vacuum ultraviolet. Can. J. Phys. 47, 1889–97 (1969).Google Scholar
  5. 5).
    Appelblad, O., Barrow R. F., Verma, R. D.: Rotational analysis of the γ bands of SiF. J. Phys. B 1, 274–82 (1968).CrossRefGoogle Scholar
  6. 6).
    Singhal, S. R., Verma, R. D.: Rotational analysis of the A-X system of the SiCl molecule. Can. J. Phys. 49, 407–11 (1971).Google Scholar
  7. 7).
    Milligan, D. E., Jacox, M. E.: Infrared and ultraviolet spectra of the products of the vacuum-ultraviolet photolysis of silane isolated in an argon matrix. J. Chem. Phys. 52, 2594–08 (1970).CrossRefGoogle Scholar
  8. 8).
    Khanna, V. M., Hauge, R., Curl, R. F., jr., Margrave, J. L.: Infrared spectrum, force constants, and thermodynamic functions of SiF2. J. Chem. Phys. 47, 5031–37 (1967).Google Scholar
  9. 9).
    Maass, G., Hauge, R. H., Margrave, J. L.: The I. R. spectra of matrix-isolated SiBr2 and SiCl2. Z. Anorg. Allgem. Chem. 392, 295–302 (1972).CrossRefGoogle Scholar
  10. 10).
    Dubois, I., Herzberg, G., Verma, R. D.: Spectrum of SiH2. J. Chem. Phys. 47, 4262–63 (1967).CrossRefGoogle Scholar
  11. 11).
    Rao, V. M., Curl, R. F., jr., Timms, P. L., Margrave, J. L.: Microwave spectrum of SiF2. J. Chem. Phys. 43, 2557–58 (1965).CrossRefGoogle Scholar
  12. 12).
    Milligan, D. E., Jacox, M. E., Guillory, W. A.: Matrix-isolation study of the vacuumultraviolet photolysis of trifluorosilane. The infrared spectrum of the free radical SiF3. J. Chem. Phys. 49, 5330–35 (1968).CrossRefGoogle Scholar
  13. 13).
    Jacox, M. E., Milligan, D. E.: Matrix-isolation study of the vacuum-ultraviolet photolysis of trichlorosilane. The infrared spectrum of the free radical SiCl3. J. Chem. Phys. 49, 3130–35 (1968).CrossRefGoogle Scholar
  14. 14).
    Siebert, H.: Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. Berlin-Heidelberg-New York: Springer 1960.Google Scholar
  15. 15).
    Jackson, C. V.: The spectrum of silicon hydride, Proc. Roy. Soc. (London) A, 126, 373–92 (1930).CrossRefGoogle Scholar
  16. 16).
    Rochester, G. D.: Die Banden-Spektren von SiH und SiD. Z. Phys. 101, 769–84 (1936).CrossRefGoogle Scholar
  17. 17).
    Douglas, A. E.: The spectrum of silicon hydride. Can. J. Phys. 35, 71–77 (1957).Google Scholar
  18. 18).
    Verma, R. D.: Spectrum of SiH and SiD. Can. J. Phys. 43, 2136–41 (1965).Google Scholar
  19. 19a).
    Sauval, A. J.: Identification of SiH lines in the solar disc spectrum. Solar Phys. 10, 319–29 (1969).CrossRefGoogle Scholar
  20. 19b).
    Lambert, D. L., Mallia, E. A.: The SiH A 2δ-X 2 Π (0,0) band in the fraunhofer spectrum. Monthly Notices Roy. Astron. Soc. 148, 313–24 (1970).Google Scholar
  21. 20).
    Jordan, P. C.: Lower electronic levels of the radicals SiH, SiH2 and SiH3. J. Chem. Phys. 44, 3400–06 (1966).CrossRefGoogle Scholar
  22. 21).
    Wirsam, B.: Combined SCF and CI calculation of the spectrum of SiH. Chem. Phys. Lett. 10, 180–82 (1971).CrossRefGoogle Scholar
  23. 22).
    Cade, P. E., Huo, W. M.: Electric dipole moment for first-and second-row diatomichydride molecules AH. J. Chem. Phys. 45, 1063–65 (1966).CrossRefGoogle Scholar
  24. 23).
    Douglas, A. E., Lutz, B. L.: Spectroscopic identification of the SiH+ molecule: The A 1π-X 1Σ+ system. Can. J. Phys. 48, 247–253 (1970).Google Scholar
  25. 24).
    Grevesse, N., Sauval, A. J.: Identification of SiHin the solar photospheric spectrum. Astron. Astrophys. 9, 232–38 (1970).Google Scholar
  26. 25).
    Honig, R. E.: Sublimation studies of silicon in the mass spectrometer. J. Chem. Phys. 22, 1610–11 (1954).CrossRefGoogle Scholar
  27. 26).
    Douglas, A. E.: The spectrum of the Si2 molecule. Can. J. Phys. 33, 801–10 (1955).Google Scholar
  28. 27).
    Verma, R. D., Warsop, P. A.: The absorption spectrum of the Si2 molecule. Can. J. Phys. 41, 152–60 (1963).Google Scholar
  29. 28).
    Lagerquist, A., Malmberg, C.: New absorption systems of the Si2 molecule in the vacuum ultraviolet region. Phys. Scr. 2, 45–49 (1970).CrossRefGoogle Scholar
  30. 29).
    Dubois, I., Leclercq, H.: Absorption spectrum of Si2 in the visible and near-ultraviolet region. Can. J. Phys. 49, 3053–54 (1971).Google Scholar
  31. 30).
    Ballik, E. A., Ramsay, D. A.: An extension of the phillips system of C2 and a survey of C2 states. Astrophys. J. 137, 84–101 (1963).CrossRefGoogle Scholar
  32. 31).
    Drowart, J., Maria, de, G. de Inghram, M. G.: Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys. 29, 1015–21 (1958).CrossRefGoogle Scholar
  33. 32).
    Mc Kellar, A.: The unidentified blue-green bands in certain N-type stellar spectra. J. Roy. Astron. Soc. Can. 61, 147–60 (1947).Google Scholar
  34. 33).
    Kleman, B.: Laboratory excitation of the blue-green bands observed in the spectra of N-type stars. Astrophys. J. 123, 162–65 (1956).CrossRefGoogle Scholar
  35. 34).
    Weltner, W. jr., Mc Leod, D. jr.: Spectroscopy of silicon carbide and silicon vapors trapped in neon and argon matrices at 40° and 20° K. J. Chem. Phys. 41, 235–45 (1964).CrossRefGoogle Scholar
  36. 35).
    Jevons, W.: Spectroscopic investigations in connection with the active modification of nitrogen III. — Spectra developed by the tetrachlorides of silicon and titanium. Proc. Roy. Soc. (London) Ser. A. 89, 187–93 (1914).CrossRefGoogle Scholar
  37. 36).
    Mulliken, R. S.: The isotope effect in band spectra IV: The spectrum of silicon nitride. Phys. Rev. 26, 319–38 (1925).CrossRefGoogle Scholar
  38. 37).
    Jenkins, F. A., de Lazlo, H.: Structure of the violet bands of silicon nitride. Proc. Roy. (London) Ser. Soc. A. 122, 103–21 (1929).CrossRefGoogle Scholar
  39. 38).
    Dunn, E. M., Dunn, T. M.: Violet electronic emission of SiN. Can. J. Phys. 50, 860–61 (1972).Google Scholar
  40. 39a).
    Nagaraj, S., Verma, R. D.: New spectrum of the SiO+ molecule. Can. J. Phys. 46, 1597–1602 (1968).Google Scholar
  41. 39b).
    Dunn, T. M., Rao, K. M., Nagaraj, S., Verma, R. D.: New spectrum of the SiO+ molecule-a correction. Can. J. Phys. 47, 2128 (1969).Google Scholar
  42. 40).
    Woods, L. H.: On the silicon oxide bands. Phys. Rev. 63, 426–30 (1943).CrossRefGoogle Scholar
  43. 41a).
    Ogilvie, J. F., Cradock, S.: Spectroscopic studies of the photodecomposition of silyl azides in argon matrices near 4° K: Detection of iminosilicon, HNSi. Chem. Commun. 1966, 364–65.Google Scholar
  44. 41b).
    Ogilvie, J. F., Newlands, M. J.: Spectroscopic data and bonding in compounds of silicon and germanium with Nitrogen. Trans. Faraday Soc. 65, 2602–06 (1969).CrossRefGoogle Scholar
  45. 42a).
    Anderson, J. S., Ogden, J. S., Ricks, M. J.: Infrared spectra and structures of matrixisolated disilicon, digermanium, and ditin oxides (Si2 O2, Ge2 O2, Sn2 O2). Chem. Commun. 1968, 1585–86.Google Scholar
  46. 42b).
    Anderson, J. S., Ogden, J. S.: Matrix isolation studies of group-IV oxides. I. Infrared 42c) spectra and structures of SiO, Si2 O2, and Si3 O3. J. Chem. Phys. 51, 4189–96 (1969).CrossRefGoogle Scholar
  47. 42c).
    Hastie, J. W., Hauge, R. H., Margrave, J. L.: Reactions and stuctures of matrix-isolated SiO species at low temperatures from infrared spectra. Inorg. Chim. Acta 3, 601–06 (1969).CrossRefGoogle Scholar
  48. 43).
    Schaschel, E. T., Gray, D. N., Timms, P. L.: Reactions of SiO with organic compounds. J. Organometal. Chem. 35, 69–79 (1972).CrossRefGoogle Scholar
  49. 44).
    Heil, T. G., Schaefer, H. F.: Potential curves for the valence-exited states of silicon, monoxide. A theoretical study. J. Chem. Phys. 56, 958–68 (1972).CrossRefGoogle Scholar
  50. 45).
    Saper, P. G.: Rotational analysis of ultraviolet bands of silicon monoxide. Phys. Rev. 42, 498–508 (1932).CrossRefGoogle Scholar
  51. 46).
    Barrow, R. F., Robinnson, H. C.: The absorption spectra of the gaseous monoxides of silicon, germanium and tin in the schumann region. Proc. Roy. Soc. (London) Ser. A. 224, 374–88 (1954).CrossRefGoogle Scholar
  52. 47).
    Lagerquist, A., Uhler, U.: The ultra-violet band — system of silicon monoxide. Arkiv Fysik 6, 95–111 (1953).Google Scholar
  53. 48).
    Nagaraj, S., Verma, R. D.: A 3ε−3 π transition of the SiO molecule. Can. J. Phys. 48, 1436–40 (1970).Google Scholar
  54. 49).
    Cornet, R., Dubois, I.: New electronic transition of SiO. Can. J. Phys. 50, 630–35 (1972).Google Scholar
  55. 50).
    Brewer, L., Rosenblatt, G. M.: Advances in high temperature Chemistry, Vol 2. New York: Academic Press 1969.Google Scholar
  56. 51).
    Hildenbrand, D. L., Murad, E.: Dissociation energy and ionization potential of silicon monoxide. J. Chem. Phy. 51, 807–11 (1969).CrossRefGoogle Scholar
  57. 52).
    Raymonda, J. W., Muenter, J. S., Klemperer, W. A.: Electric dipole moment of SiO and GeO. J. Chem. Phys. 52, 3458–61 (1970).CrossRefGoogle Scholar
  58. 53).
    Törring, T.: Das Mikrowellenrotationsspektrum des SiO. Z. Naturforsch. A. 23, 777–78 (1968).Google Scholar
  59. 54).
    Cornet, R., Dubois, I., Gerkens, M., Tripnaux, E.: B 2Σ+X 2Σ +transition of the SiO+ ion. Bull. Soc. Roy. Sci. Liege 41, 183–87 (1972).Google Scholar
  60. 55).
    Barrow, R. F., Deutsch, J. L., Lagerquist, A., Westerlund, B.: Rotational analysis of the E-X system of silicon monosulphide. Proc. Phys. Soc. (London) 78, 1307–09 (1961).CrossRefGoogle Scholar
  61. 56).
    Nilheden, G.: The perturbations in the near ultraviolet band-system (D-X) of silicon monosulphide. Arkiv Fysik 10, 19–36 (1956).Google Scholar
  62. 57).
    Hoeft, J., Lovas, F. J., Tiemann, E., Törring, T.: Elektrisches Dipolmoment und Mikrowellenrotationsspektrum von SiSe. Z. Naturforsch. A 24, 1422–23 (1969).Google Scholar
  63. 58).
    Hoeft, J.: Das Mikrowellenrotationsspektrum des SiSe. Z. Naturforsch. A 20, 1122–24 (1965).Google Scholar
  64. 59).
    Hoeft, J., Lovas, F. J., Tiemann, E., Törring, T.: Dipole moments and hyperfine structure of the group IV/VI. Diatomic molecules. J. Chem. Phys. 53, 2736–43 (1970).CrossRefGoogle Scholar
  65. 60).
    Verma, R. D.: A 4Σ2π transition of the SiF molecule. Can. J. Phys. 40, 586–97 (1962).Google Scholar
  66. 61).
    Johns, J. W. C., Barrow, R. F.: The band spectrum of silicon monofluoride, SiF. Proc. Phys. Soc. (London) 71, 476–84 (1958).CrossRefGoogle Scholar
  67. 62).
    O'Hare, P. A. G., Wahl, A. C.: Molecular orbital investigation of CF and SiF and their positive and negative ions. J. Chem. Phys. 55, 666–76 (1971).CrossRefGoogle Scholar
  68. 63).
    Barrow, R. F., Butler, D., Johns, J. W. C., Powell, J. L.: Some observations on the spectra of the diatomic fluorides of Si, Ge, Sn, Pb. Proc. Phys. Soc. (London) 73, 317–20 (1959).CrossRefGoogle Scholar
  69. 64).
    Hastie, J. W., Margrave, J. L.: Re-evaluation of the dissociation energy of CaF. J. Chem. Eng. Data 13, 428–29 (1968).CrossRefGoogle Scholar
  70. 65).
    Oldershaw, G. A., Robinson, K.: Ultraviolet absorption spectrum of silicon monochloride. J. Mol. Spectr. 38, 306–13 (1971).CrossRefGoogle Scholar
  71. 66a).
    Oldershaw, G. A., Robinson, K.: Ultra-violet spectrum of SiBr. Trans. Faraday Soc. 67, 1870–74 (1971).CrossRefGoogle Scholar
  72. 66b).
    Rao, K. B., Haranath, P. B. V.: The emission band spectrum of SiBr in the visible region, J. Phys. B 2, 1381–84 (1969).CrossRefGoogle Scholar
  73. 66c).
    Kuznetsova, L. A., Kuzyakov, Yu. Ya.: Rotational analysis of the 2Σ-2π1/2 band system of SiBr molecule. Vestn. Mosk. Univ. Ser. II: Khim. 24, 103–04 (1969).Google Scholar
  74. 67a).
    Oldershaw, G. A., Robinson, K.: Ultra-violet absorption spectra of Gel and SiI. Trans. Faraday Soc. 64, 2256–59 (1968).CrossRefGoogle Scholar
  75. 67b).
    Lakshminarayana, A., Haranath, P. B. W.: The emission band spectrum of silicon monoiodide. J. Phys. B 3, 576–78 (1970).CrossRefGoogle Scholar
  76. 67c).
    Billingsley, J.: The absorption and emission spectrum of SiI. J. Mol. Spectr. 43, 1284–7 (1972).CrossRefGoogle Scholar
  77. 68).
    Houdart, R.: Spectre infrarouge de la molécule AuSi. Compt. Rend. 262, 550–53 (1966).Google Scholar
  78. 69).
    Kaufman, M., Muenter, J., Klemperer, W. A.: Geometry of some refractory metal dioxides. J. Chem. Phys. 47, 3365–66 (1967).CrossRefGoogle Scholar
  79. 70).
    Hengge, E.: Properties and preparations of the SiSi linkages in inorganic and organic compounds. Topics in current chemistry.Google Scholar
  80. 71).
    Bowrey, M., Purnell, J. H.: Insertion reactions of SiH2. J. Am. Chem. Soc. 92, 259–495 (1970).CrossRefGoogle Scholar
  81. 72a).
    Skell, P. S., Goldstein, E. J.: Dimethylsilene: CH3 SiCH3. J. Am. Chem. Soc. 86, 1442–43 (1964).Google Scholar
  82. 72b).
    Nefedow, O. M., Manakow, M. N.: Entstehung und Reaktionen des Dimethylsilylens, eines Siliciumanalogons der Carbene. Angew. Chem. 76, 270 (1964).CrossRefGoogle Scholar
  83. 72c).
    Atwell, W. H., Weyenberg, D. R.: Zwischenverbindungen des zweiwertigen Siliciums (Silylene). Angew. Chem. 81, 485–93 (1969).CrossRefGoogle Scholar
  84. 73a).
    Liu, C. S., Margrave, J. L., Thompson, J. C.: Reactions of silicon difluoride with unsaturated organic compounds. Part II. Alkyl Substituted Alkynes. Can. J. Chem. 50, 465–73 (1972).CrossRefGoogle Scholar
  85. 73b).
    Liu, C. S., Margrave, J. L., Thompson, J. C., Timms, P.: Reactions of unsaturated compounds with silicon difluoride. Part I. Acetylene. Can. J. Chem. 50, 459–64 (1972).CrossRefGoogle Scholar
  86. 73c).
    Margrave, J. L., Wilson, P. W.: Silicon difluoride, a carbene analog. Its reactions and properties. Accounts Chem. Res. 4, 145–52 (1971).CrossRefGoogle Scholar
  87. 74).
    Timms, P. L.: Some reactions of silicon dichloride. Inorg. Chem. 7, 387–89 (1968).CrossRefGoogle Scholar
  88. 75a).
    Schmid, G., Boese, R.: Silylen — Metallkomplexe. Dijodsilylen — pentacarbonyl — wolfram (0). Chem. Ber. 105, 3306–09 (1972).CrossRefGoogle Scholar
  89. 75b).
    Schmid, G., Balk, H. J.: Silylene als Liganden in Platinkomplexen. Chem. Ber. 103, 2240–44 (1970).CrossRefGoogle Scholar
  90. 76).
    Dubois, I.: The absorption spectrum of the free SiH2 radical. Can. J. Phys. 46, 2485–90 (1968).Google Scholar
  91. 77).
    Hopkins, H. P., Thompson, J. C., Margrave, J. L.: Electron spin resonance studies of silicon difluoride. J. Am. Chem. Soc. 90, 901–02 (1968).CrossRefGoogle Scholar
  92. 78).
    Rao, D. R., Venkatesvarlu, P.: Emission spectrum of SiF2. Part I. The band system in the region 2755–2179 Å. J. Mol. Spectr. 7, 287–303 (1961).CrossRefGoogle Scholar
  93. 79).
    Hastie, J. W., Hauge, R. H., Margrave, J. L.: Infrared spectra of silicon difluoride in neon and argon matrices. J. Am. Chem. Soc. 91, 2536–38 (1969).CrossRefGoogle Scholar
  94. 80).
    Milligan, D. E., Jacox, M.: Matrix-isolation study of the vacuum-ultraviolet photolysis of difluorosilane. The infrared and ultraviolet spectra of the free radical SiF2. J. Chem. Phys. 49, 4269–75 (1968).CrossRefGoogle Scholar
  95. 81).
    Rao, R. D.: New electronic emission from SiF2. J. Mol. Spectr. 34, 284–87 (1970).CrossRefGoogle Scholar
  96. 82).
    Dixon, R. N., Halle, M.: Rotational analysis of absorption bands in the 2266 Å system of SiF2. J. Mol. Spectry. 36, 192–203 (1970).CrossRefGoogle Scholar
  97. 83).
    Khanna, V. M., Besenbruch, G., Margrave, J. L.: Ultraviolet absorption spectrum of SiF2. J. Chem. Phys. 46, 2310–14 (1967).CrossRefGoogle Scholar
  98. 84).
    Rao, V. M., Curl, R. F., jr.: Microwave spectrum and force constants of SiF2: Centrifugal Distortion. J. Chem. Phys. 45, 2032–36 (1966).CrossRefGoogle Scholar
  99. 85).
    Johns, J. W. C., Chantry, G. W., Barrow, R. F.: The ultraviolet spectrum of silicon difluoride. Trans. Faraday Soc. 54, 1589–91 (1958).CrossRefGoogle Scholar
  100. 86).
    Gole, J. L., Hauge, R. H., Margrave, J. L.: The vacuum ultraviolet spectra of SiF2 and GeF2. J. Mol. Spectry. 43, 441–51 (1972).CrossRefGoogle Scholar
  101. 87a).
    Schäfer, H., Morcher, B.: Chemische Transportreaktionen. III. Über den Transport von Silicium im Temperaturgefälle unter Mitwirkung der Silicium(II)-halogenide und über die Druckabhängigkeit der Transportrichtung. Z. Anorg. Allgem. Chem. 290, 279–91 (1957).CrossRefGoogle Scholar
  102. 87b).
    Schäfer, H., Bruderreck, H., Morcher, B.: Die Thermochemie der Silicium(II)halogenide. Z. Anorg. Allgem. Chem. 352, 122–37 (1967).CrossRefGoogle Scholar
  103. 88).
    Milligan, D. E., Jacox, M. E.: Matrix-isolation study of the vacuum-ultraviolet photolysis of dichlorosilane. The infrared spectrum of the free radical SiCl2. J. Chem. Phys. 49, 1938–42 (1968).CrossRefGoogle Scholar
  104. 89).
    Asundi, R. K., Karim, M., Samuel, R.: Emission bands of SiCl2 and SnCl2. Proc. Phys. Soc. (London) 50, 581–98 (1938).CrossRefGoogle Scholar
  105. 90).
    Herzberg, G., Verma, R. D.: Spectra and structures of the free HSiCl and HSiBr radicals. Can. J. Phys. 42, 395–432 (1964).Google Scholar
  106. 91).
    Billingsley, J.: Absorption spectrum of HSiI. Can. J. Phys. 50, 531–43 (1972).Google Scholar
  107. 92).
    Hougen, J. T., Watson, J. K. G.: Anomalous rotational line intensities in electronic transitions of polyatomic molecules: Axis-switching. Can. J. Phys. 43, 298–320 (1965).Google Scholar
  108. 93).
    Popkov, K. K.: Possibility of the formation of siliconium and silanolate ions. Zh. Obshch. Khim. 39, 2791 (1969).Google Scholar
  109. 94).
    Olah, G. A., Mo, Y. K.: Organometallic chemistry. III. Attempted preparation of trivalent silicocations (silicenium ions). The exchange reaction of methylfluorosilanes with antimony pentafluoride. J. Am. Chem. Soc. 93, 4942–43 (1971).CrossRefGoogle Scholar
  110. 95).
    Jutzi, P.: Massenspektrometrischer Nachweis des 9-methyl-9-silaanthracen-ions. J. Organometal. Chem. 16, 71–72 (1969).CrossRefGoogle Scholar
  111. 96).
    Barton, T. J., McIntosh, C. L.: Spectroscopic evidence for a silicon-carbon double-bond. Chem. Commun. 1972, 861–62.Google Scholar
  112. 97).
    Davidson, I. M. T.: Some aspects of silicon radical chemistry. Quart. Rev. (London) 25, 111–33 (1971).Google Scholar
  113. 98).
    Bowles, A. J., Hudson, A., Jackson, R. A.: An electron resonance study of some reactions involving silyl radicals. J. Chem. Soc. (B) 1971, 1947–49.Google Scholar
  114. 98a).
    Bennett, S. W., Eaborn, C., Jackson, R. A., Root, K. D. J.: An electron spin resonance study of some silyl radicals. J. Chem. Soc. (A) 1970, 348–51.Google Scholar
  115. 99b).
    Bennett, S. W., Eaborn, C., Hudson, A., Hussain, H. A., Jackson, R. A.: Electron spin resonance spectra of trimethylsilyl, trimethylgermyl and related free radicals in solution. J. Organometal. Chem. 16, 36–38 (1969).CrossRefGoogle Scholar
  116. 100).
    Krusic, P. J., Kochi, J. K.: Electron spin resonance of organosilyl radicals in solution. J. Am. Chem. Soc. 91, 3938–40 (1969).CrossRefGoogle Scholar
  117. 101).
    Morehouse, R. L., Christiansen, J. J., Gordy, W.: ESR of free radicals trapped in inert matrices at low temperature: CH3, SiH3, GeH3, and SnH3. J. Chem. Phys. 45, 1751–58 (1966).CrossRefGoogle Scholar
  118. 102).
    Jackel, G. S., Gordy, W.: Electron spin resonance of free radicals formed from group-IV and group-V hydrides in inert matrices at low temperature. Phys. Rev. 176, 443–52 (1968).CrossRefGoogle Scholar
  119. 103).
    Sharp, J. H., Symons, M. C. R.: Unstable intermediates. Part LXXXI. Electron spin resonance spectra of γ-irradiated methyl silanes: Methyl sityl radicals. J. Chem. Soc. (A) 1970, 3084–87.Google Scholar
  120. 104).
    Geoffroy, M., Lucken, E. A. C.: The electron spin resonance spectrum of triphenylsilyl radical formed by the x-irradiation of monocrystalline triphenylsilane. Helv. Chim. Acta 53, 813–18 (1970).CrossRefGoogle Scholar
  121. 105).
    Cooper, J., Hudson, A., Jackson, R. A.: Substituent effects on the geometry of some trigonal radicals. Mol. Phys. 23, 209–12 (1972).CrossRefGoogle Scholar
  122. 106).
    Hesse, C., Leray, N., Roncin, J.: Structure of methylchlorosilyl radicals. J. Chem. Phys. 57, 749–52 (1972).CrossRefGoogle Scholar
  123. 107).
    Merritt, M. V., Fessenden, R. W.: ESR spectra of the fluorinated silyl radicals. J. Chem. Phys. 56, 2353–57 (1972).CrossRefGoogle Scholar
  124. 108).
    Birchall, T., Drummond, L: Nuclear magnetic resonance spectra of phenylsilane, phenylgermane, and their anions: Comments on the relative acidities of phenylgermane and germane. J. Chem. Soc. (A) 1970, 1401–05.Google Scholar
  125. 109).
    Weiss, E., Hencken, G., Kühr, H.: Kristallstrukturen und kernmagnetische Breitlinienresonanz der Alkalisilyle SiH3M (M = K, Rb, Cs). Chem. Ber. 103, 2868–72 (1970).CrossRefGoogle Scholar
  126. 110).
    Benkeser, R. A.: The chemistry of trichlorosilane-tertiary amine combinations. Accounts Chem. Res. 4, 94–100 (1971).CrossRefGoogle Scholar
  127. 111).
    Witte, J., Schnering, H. G. V.. Die Kristallstruktur von NaSi und NaGe. Z. Anorg. Allgem. Chem. 327, 260–73 (1964).CrossRefGoogle Scholar
  128. 112).
    Busmann, E.: Die Kristallstrukturen von KSi, RbSi, CsSi, KGe, RbGe und CsGe. Z. Anorg. Allgem. Chem. 313, 90–106 (1961).CrossRefGoogle Scholar
  129. 113).
    Janzon, K. H., Schäfer, H., Weiss, A.: Zur Kenntnis der Disilicide der Erdalkalimetalle. Z. Anorg. Allgem. Chem. 372, 87–99 (1970).CrossRefGoogle Scholar
  130. 114).
    Eisenmann, B., Riekel, C., Schäfer, H., Weiss, A.: Zur Kenntnis ternärer Disllicide der Erdalkalimetalle. Z. Anorg. Allgem. Chem. 372, 325–31 (1970).CrossRefGoogle Scholar
  131. 115).
    Bürger, H., Eujen, R.: Infrarotspektren der Tetraederionen Si4 4− und Ge4 4−. Z. Anorg. Allgem. Chem. 394, 19–25 (1972).CrossRefGoogle Scholar
  132. 116a).
    Hellner, E.: Die Kristallstruktur des CaSi. Z. Anorg. Allgem. Chem. 261, 226–36 (1950).Google Scholar
  133. 116b).
    Rocktäschel, G., Weiss, A.: Zur Kenntnis der Strontiumsilicide. Z. Anorg. Allgem. Chem. 316, 231–36 (1962).CrossRefGoogle Scholar
  134. 116c).
    Rocktäschel, G.: Diss. TH Darmstadt, 1962.Google Scholar
  135. 117).
    Müller, W., Schäfer, H., Weiss, A.: Zur Kenntnis der Phasen CaLiSi2 und CaLiGe2. Z. Naturforsch. B 26, 534–36 (1971).Google Scholar
  136. 118).
    Eisenmann, B., Janzon, K. H., Schäfer, H., Weiss, A.: Zur Kenntnis von Ba3Si4. Z. Naturforsch. B 24, 457–58 (1969).Google Scholar
  137. 119).
    Axel, H., Schäfer, H., Weiss, A.: Die Kristallstruktur von Lithiumsilicid Li2Si. Angew. Chem. 77, 379–80 (1965).CrossRefGoogle Scholar
  138. 120a).
    Eisenmann, B., May, N., Müller, W., Schäfer, H., Weiss, A., Winter, J., Ziegleder, G.: Neue Vertreter des ThCr2Si2-Typs und dessen Verwandtschaft zum AntiPbFCI-Gitter. Z. Naturforsch. B 25, 1350–52 (1970).Google Scholar
  139. 120b).
    May, N., Schäfer, H.: Neue Verbindungen im ThCr2Si2-Typ. Z. Naturforsch. B 20, 864–65 (1972).Google Scholar
  140. 121).
    Schäfer, H., Axel, H., Weiss, A.: Die Kristallstruktur des Li7Si2. Z. Naturforsch. B 20, 1010 (1965).Google Scholar
  141. 122a).
    Nagorsen, G., Rocktäschel, G., Schäfer, H., Weiss, A.: Die Kristallstruktur der Phase Sr5Si3. Z. Naturforsch. B 22, 101–02 (1967).Google Scholar
  142. 122b).
    Janzon, K., Schäfer, H., Weiss, A.: Die Kristallstruktur der Phase Ba5Si3. Z. Naturforsch. B 21, 287 (1966).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  1. 1.Institut für Anorganische Chemie der Technischen UniversitätBraunschweig

Personalised recommendations