Gradient techniques for computation of stationary points

  • E. K. Blum
Numerical Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Atkinson, Numerical Solution of Eigenvalue Problem for Compact Integral Operators, TAMS 1967.Google Scholar
  2. 2.
    E. K. Blum, Numerical Analysis and Computation (Ch. 5, 12), Addison-Wesley, 1972.Google Scholar
  3. 3.
    —, A Convergent Gradient Procedure in pre-Hilbert Spaces, Pacific J. Math., 18, 1 (1966).Google Scholar
  4. 4.
    —, Stationary points of functionals in pre-Hilbert spaces, J. Comp. Syst. Sci Apr. 67.Google Scholar
  5. 5.
    J. W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, 1971.Google Scholar
  6. 6.
    A. A. Goldstein, Constructive Real Analysis, Harper 67.Google Scholar
  7. 7.
    E. S. Levitin and B. T. Polyak, Constrained Minimization Methods, Zh. vychisl. Mat. mat. Fig., 1966 (Comp. Math and Math. Phys).Google Scholar
  8. 8.
    M. Z. Nashed, Differentiability and Related Properties of Nonlinear Operators — in Nonlinear Functional Analysis and Applications, ed. L. B. Rall Ac. Press 1971.Google Scholar
  9. 9.
    S. F. McCormick, A. General Approach to One-step Iterative Methods with Application to Eigenvalue Problems, J. Comp. and Syst. Sci. Aug. 72.Google Scholar
  10. 10.
    E. K. Blum and G. Rodrigue, Solution of Eigenvalue Problems in Hilbert Spaces by a Gradient Method, USC Math. Dept. Prepring Apr. 72.Google Scholar
  11. 11.
    H. Wielandt, Error bounds for Eigenvalues of Symmetric Integral Equations Proc. AMS Symp. Applied Math., C, 1956.Google Scholar
  12. 12.
    G. Rodrigue, A Gradient Method for the Matrix Eigenvalue Problem Ax = λ Bx Kent State U. Math. Dept. Dec. 72.Google Scholar
  13. 13.
    S. McCormick and G. Rodrigue, A Class of Gradient Methods for Least Squares Problems for Operators with Closed and Nonclosed Range, Claremont U. and U.S.C. ReportGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • E. K. Blum
    • 1
  1. 1.Department of MathematicsU. of Southern CaliforniaLos Angeles

Personalised recommendations