A heuristic approach to combinatorial optimization problems

  • E. Biondi
  • P. C. Palermo
Mathematical Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Dynamic Program Heuristic Method Heuristic Approach Delivery Problem Small Size Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Agin "Optimum seeking with Branch and Bound", Mgmt Sci. 13, 176–186, (1966).Google Scholar
  2. 2.
    S. Ashour "An experimental investigation and comparative evaluation of flow-shop scheduling techniques", Opns. Res. 18, 541–549, (1970).Google Scholar
  3. 3.
    E. Balas "A note on the Branch — and — Bound Principle", Opns. Res. 16, 442–445, (1968).Google Scholar
  4. 4.
    E. Biondi, P.C. Palermo, C. Pluchinotta "A heuristic method for a delivery problem", 7-th Mathematical Programming Symposium 1970 The Hague — The Netherlands.Google Scholar
  5. 5.
    H. Campbell, R. Dudek, M. Smith "A heuristic algorithm for the n job — m machine sequencing problem", Mgmt. Sci. 16, 630–637, (1970).Google Scholar
  6. 6.
    N. Christofides, S. Eilon "An algorithm for the vehicle dispat ching problem", Opl. Res. Q. 20, 309–318 (1969).Google Scholar
  7. 7.
    R.J. Giglio, H.M. Wagner "Approximate Solutions to the three-Machine Scheduling Problem", Opns. Res., 305–319 (1964).Google Scholar
  8. 8.
    P. Hart, N.J. Nilsson, B. Raphael "A formal basis of the heu ristic determination of minimum cost paths" IEEE Trans. SSC 4, 100–107 (1968).Google Scholar
  9. 9.
    M. Held, R.M. Karp "A Dynamic Programming Approach to sequencing problems", J. Soc. ind. appl. Math. 10, 196–208 (1962).CrossRefGoogle Scholar
  10. 10.
    E. Ignall, L. Schrage "Application of the Branch — and — Bound Technique to some flow-shop scheduling problems", Opns. Res. 13, 400–412 (1965).Google Scholar
  11. 11.
    G.B. McMahon, P.P. Burton "Flow-shop scheduling with Branch — and — Bound method", Opns. Res. 15, 473–481 (1967).Google Scholar
  12. 12.
    L.G. Mitten "Branch — and — Bound Methods: general formulation and properties", Opns. Res. 16, 442–445, (1968).Google Scholar
  13. 13.
    P.C. Palermo, M. Tamaccio "A Branch-Search algorithm for a delivery problem" Working Paper LCA 71–4 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • E. Biondi
    • 1
  • P. C. Palermo
    • 1
  1. 1.Istituto di Elettrotecnica ed ElettronicaPolitecnico di MilanoItaly

Personalised recommendations