Advertisement

Penalty methods and augmented Lagrangians in nonlinear programming

  • R. Tyrrell Rockafellar
Mathematical Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)

Keywords

Saddle Point Penalty Function Dual Problem Nonlinear Program Penalty Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Arrow, F. J. Gould and S. M. Howe, "A general saddle point result for constrained optimization", Institute of Statistics Mimeo Series No. 774, Univ. of N. Carolina (Chapel Hill), 1971.Google Scholar
  2. 2.
    K. J. Arrow and R. M. Solow, "Gradient methods for constrained maxima, with weakened assumptions", in Studies in Linear and Nonlinear Programming, K. Arrow, L. Hurwicz and H. Uzawa (editors), Stanford Univ. Press, 1958.Google Scholar
  3. 3.
    D. P. Bertsekas, "Combined primal-dual and penalty methods for constrained minimization", SIAM J. Control, to appear.Google Scholar
  4. 4.
    J. D. Buys, "Dual algorithms for constrained optimization", Thesis, Leiden, 1972.Google Scholar
  5. 5.
    A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Optimization Techniques, Wiley, 1968.Google Scholar
  6. 6.
    R. Fletcher, "A class of methods for nonlinear programming with termination and convergence properties", in Integer and Nonlinear Programming, J. Abadie (editor), North-Holland, 1970.Google Scholar
  7. 7.
    R. Fletcher, "A class of methods for non-linear programming III: Rates of convergence", in Numerical Methods for Non-linear Optimization, F. A. Lootsma (editor), Academic Press, 1973.Google Scholar
  8. 8.
    R. Fletcher and S. Lill, "A class of methods for nonlinear programming, II: computational experience", in Nonlinear Programming, J. B. Rosen, O. L. Mangasarian and K. Ritter (editors), Academic Press, 1971.Google Scholar
  9. 9.
    P. C. Haarhoff and J. D. Buys, "A new method for the optimization of a nonlinear function subject to nonlinear constraints", Computer J. 13 (1970), 178–184.CrossRefGoogle Scholar
  10. 10.
    M. R. Hestenes, "Multiplier and gradient methods", J. Opt. Theory Appl. 4 (1969), 303–320.CrossRefGoogle Scholar
  11. 11.
    B. W. Kort and D. P. Bertsekas, "A new penalty function method for constrained minimization", Proc. of IEEE Decision and Control Conference, New Orleans, Dec. 1972.Google Scholar
  12. 12.
    S. A. Lill, "Generalization of an exact method for solving equality constrained problems to deal with inequality constraints", in Numerical Methods for Nonlinear Optimization, F. A. Lootsma (editor), Academic Press, 1973.Google Scholar
  13. 13.
    D. G. Luenberger, Introduction to linear and nonlinear programming, Addison-Wesley, 1973, 320–322.Google Scholar
  14. 14.
    O. L. Mangasarian, "Unconstrained Lagrangians in nonlinear programming", Computer Sciences Tech. Report #174, Univ. of Wisconsin, Madison, 1973.Google Scholar
  15. 15.
    A. Miele, E. E. Cragg, R. R. Iver and A. V. Levy, "Use of the augmented penalty function in mathematical programming, part I", J. Opt. Theory Appl. 8 (1971), 115–130.CrossRefGoogle Scholar
  16. 16.
    A. Miele, E. E. Cragg and A. V. Levy, "Use of the augmented penalty function in mathematical programming problems, part II", J. Opt. Theory Appl. 8 (1971, 131–153.CrossRefGoogle Scholar
  17. 17.
    A. Miele, P. E. Moseley and E. E. Cragg, "A modification of the method of multipliers for mathematical programming problems", in Techniques of Optimization, A. V. Balakrishnan (editor), Academic Press, 1972.Google Scholar
  18. 18.
    A. Miele, P. E. Moseley, A. V. Levy and G. M. Coggins, "On the method of multipliers for mathematical programming problems", J. Opt. Theory Appl. 10 (1972), 1–33.CrossRefGoogle Scholar
  19. 19.
    M. J. D. Powell, "A method for nonlinear optimization in minimization problems", in Optimization, R. Fletcher (editor), Academic Press, 1969.Google Scholar
  20. 20.
    R. T. Rockafellar, "New applications of duality in convex programming", written version of talk at 7th International Symposium on Math. Programming (the Hague, 1970) and elsewhere, published in the Proc. of the 4th Conference on Probability (Brasov, Romania, 1971).Google Scholar
  21. 21.
    R. T. Rockafellar, "A dual approach to solving nonlinear programming problems by unconstrained optimization", Math. Prog., to appear.Google Scholar
  22. 22.
    R. T. Rockafellar, "The multiplier method of Hestenes and Powell applied to convex programming", J. Opt. Theory Appl., to appear.Google Scholar
  23. 23.
    R. T. Rockafellar, "Augmented Lagrange multiplier functions and duality in nonconvex programming", SIAM J. Control, to appear.Google Scholar
  24. 24.
    R. D. Rupp, "A method for solving a quadratic optimal control problem", J. Opt. Theory Appl. 9 (1972), 238–250.CrossRefGoogle Scholar
  25. 25.
    R. D. Rupp, "Approximation of the classical isoperimetric problem", J. Opt. Theory Appl. 9 (1972), 251–264.CrossRefGoogle Scholar
  26. 26.
    S. S. Tripathi and K. S. Narendra, "Constrained optimization problems using multiplier methods", J. Opt. Theory Appl. 9 (1972), 59–70.CrossRefGoogle Scholar
  27. 27.
    A. P. Wierzbicki, "Convergence properties of a penalty shifting algorithm for nonlinear programming porblems with inequality constraints", Archiwum Automatiki i Telemechaniki (1970).Google Scholar
  28. 28.
    A. P. Wierzbicki, "A penalty function shifting method in constrained static optimization and its convergence properties", Archiwum Automatyki i Telemechaniki 16 (1971), 395–416.Google Scholar
  29. 29.
    A. P. Wierzbicki and A. Hatko, "Computational methods in Hilbert space for optimal control problems with delays", these proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • R. Tyrrell Rockafellar
    • 1
  1. 1.Dept. of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations