Design of optimal incomplete state feedback controllers for large linear constant systems

  • W. J. Naeije
  • P. Valk
  • O. H. Bosgra
Stochastic Control
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


In this paper the theory of linear optimal output feedback control is investigated in relation to its applicability in the design of high-dimensional linear multivariable control systems. A method is presented which gives information about the relative importance of the inclusion of a state vector element in the output feedback. The necessary conditions of the optimization problem are shown to be a set of linear/quadratic algebraic matrix equations. Numerical algorithms are presented which take account of this linear/quadratic character.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Kleinman, M. Athans, The design of suboptimal linear time-varying systems. IEEE Trans. Aut. Contr. 13 (1968), 150–160.CrossRefGoogle Scholar
  2. 2.
    R.L. Kosut, Suboptimal control of linear time-invariant multivariable systems subject to control structure constraints. Ph.D. diss. Univ. Pennsylvania, 1969; also IEEE Trans. Aut. Contr. 15 (1970), 557–563.CrossRefGoogle Scholar
  3. 3.
    W.S. Levine, T.L. Johnson, M. Athans, Optimal limited state variable feedback controllers for linear systems. IEEE Trans. Aut. Contr. 16 (1971), 785–793.CrossRefGoogle Scholar
  4. 4.
    P.J. McLane, Linear optimal stochastic control using instantaneous output feedback. Int. J. Contr. 13 (1971), 383–396.Google Scholar
  5. 5.
    S. Axsäter, Sub-optimal time-variable feedback control of linear dynamic systems with random inputs. Int. J. Contr. 4 (1966), 549–566.Google Scholar
  6. 6.
    M. Athaus, The matrix minimum principle. Inf. Contr. 11 (1968), 592–606.CrossRefGoogle Scholar
  7. 7.
    M.T. Li, On output feedback stabilizability of linear system. IEEE Trans. Aut. Contr. 17 (1972), 408–410.CrossRefGoogle Scholar
  8. 8.
    A.K. Nandi, J.H. Herzog, Comments on "Design of single-input system for specified roots using output feedback". IEEE Trans. Aut. Contr. 16 (1971), 384–385.CrossRefGoogle Scholar
  9. 9.
    D.G. Luenberger, Optimization by vector space methods. Wiley, N.Y. 1969Google Scholar
  10. 10.
    M.C. Pease, Methods of matrix algebra. Academic Press, New York 1965.Google Scholar
  11. 11.
    T.E. Fortmann, A matrix inversion identity. IEEE Trans. Aut. Contr. 15 (1970), 599.CrossRefGoogle Scholar
  12. 12.
    H. Kwakernaak, R. Sivan, Linear optimal control systems. Wiley-Interscience, New York 1972.Google Scholar
  13. 13.
    B.D.O. Anderson, J.B. Moore, Linear optimal control. Prentice-Hall, Englewood Cliffs, N.J., 1971.Google Scholar
  14. 14.
    W.S. Levine, M. Athans, On the determination of the optimal constant output feedback gains for linear multivariable systems. IEEE Trans. Aut. Contr. 15 (1970), 44–48.CrossRefGoogle Scholar
  15. 15.
    R.A. Smith, Matrix equation XA+BX=C. SIAM J. Appl. Math. 16 (1968), 198–201.CrossRefGoogle Scholar
  16. 16.
    P.G. Smith, Numerical solution of the matrix equation AX+XAT+B=0. IEEE Trans. Aut. Contr. 16 (1971), 278–279.CrossRefGoogle Scholar
  17. 17.
    O.H. Bosgra, Application of optimal output control theory to a model of external power station boiler dynamic behaviour. Report N-95, Lab. Meas. Contr., Delft Univ. Techn., Stevinweg 1, Delft, The Netherlands, 1973.Google Scholar
  18. 18.
    E.J. Davison, N.S. Rau, The optimal output feedback control of a synchronous machine. IEEE Trans. Pow. App. Syst. 90 (1971), 2123–2134.Google Scholar
  19. 19.
    M. Ramamoorty, M. Arumugam, Design of optimal constant-output feedback controllers for a synchronous machine, Proc. IEE 119 (1972), 257–259.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • W. J. Naeije
    • 1
  • P. Valk
    • 1
  • O. H. Bosgra
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations