Coupling of state variables in the optimal low thrust orbital transfer problem

  • Romain Henrion
Optimal Control
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


The decoupling operation presented in this paper leads to two important results :
  • an easy, direct theoretical examination of singular arcs;

  • a considerable increase in numerical precision and decrease in sensitivity with respect to initial conditions.


Differential Form Canonical Transformation Polar Variable Numerical Precision Adjoint State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FRAEIJS de VEUBEKE, B. "Canonical Transformations and the Thrust-Coast-Thrust Optimal Transfer Problem" Astronautica Acta, 4, 12, 323–328, (1966)Google Scholar
  2. 2.
    FRAEIJS de VEUBEKE, B. "Une généralisation du principe du maximum pour les systèmes bang-bang avec limitation du nombre de commutations" Centre Belge de Recherches Mathématiques. Colloque sur la Théorie Mathématique du Contrôle Optimal. Vander, 55–67, Louvain (1970)Google Scholar
  3. 3.
    KELLEY, H.J., KOPP, R.E. and MOYER, H.G. "Singular Extremals" in "Topics in Optimization" (ed. G. LEITMANN), Ac. Press, chap. 3, 63–101, New York (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Romain Henrion
    • 1
  1. 1.Aspirant F.N.R.S. Aerospace LaboratoryUniversity of LiègeBelgium

Personalised recommendations