Sufficient conditions of optimality for contingent equations

  • V. I. Blagodatskih
Optimal Control
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Maximum Principle Support Function Differential Inclusion Adjoint System Contingent Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blagodatskih, V.I., On local controllability of differential inclution (Russian), Differenc. Uravn. 9, No. 2, (1973) 361–362.Google Scholar
  2. 2.
    Filippov, A.F., Classical solutions of differential equations with multivalued right-hand sides (English trans.), SIAM Control, 5 (1967), 609–621.CrossRefGoogle Scholar
  3. 3.
    Hermes, H., The generalized differential equation x ∈ R(t, x), Adv. in Math., 4, No. 2, (1970) 149–169.CrossRefGoogle Scholar
  4. 4.
    Ponstein, J., Seven kinds of convexity, SIAM Review, 9, No. 1, (1967) 115–119.CrossRefGoogle Scholar
  5. 5.
    Blagodatskih, V.I., Sufficient condition of optimality (Russian), Differens. Uravn., 9, No. 3, (1973), 416–422.Google Scholar
  6. 6.
    Boltyamskii, V.G., Linear problem of optimal control (Russian), Differenc. Uravn., 5, No. 3, (1969) 783–799.Google Scholar
  7. 7.
    Dajovich, S., On optimal control theory in linear systems (Russian), Differenc. Uravn., 8, No. 9, (1972) 1687–1690.Google Scholar
  8. 8.
    Boltyanskii, V.G., Mathematical methods of optimal control, Moscow, (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • V. I. Blagodatskih
    • 1
  1. 1.Mathematical Institute of USSR Academy of SciencesMoscowUSSR

Personalised recommendations