The dynamic clusters method and optimization in non hierarchical-clustering

  • E. Diday
Pattern Recognition
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Algorithms which are operationnally efficient and which give a good partition of a finite set, produce solutions that are not necessarily optimum. The main aim of this paper is a synthetical study of properties of optimality in spaces formed by partitions of a finite set. We formalize and take for a model of that study a family of particularily efficient techniques of "clusters centers" type. The proposed algorithm operates on groups of points or "kernels"; these kernels adapt and evolve into interesting clusters.

After having developed the notion of "strong" and "weak" patterns, and the computer aspects, we illustrate the different results by an artificial example.


Cluster Center Weak Form Strong Form Good Partition Connected Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    BALL G.H., 1970 — Classification Analysis — Technical Note, Stanford Research Institute. Menlo Park, California 94025 USAGoogle Scholar
  2. (2).
    BARBU M., 1968 — Partitions d'un ensemble fini: leur treillis M.S.H. no 22Google Scholar
  3. (3).
    BENZECRI J.P., 1971 — Algorithmes rapides d'agrégation.Sup.Class. no9 Laboratoire de Statistique Mathématique. Université de Paris-6Google Scholar
  4. (4).
    BENZECRI J.P., 1970 — Représentation Euclidienne d'un ensemble muni de masses et de distances. Université de Paris-6Google Scholar
  5. (5).
    BERGE C., 1967 — Théorie des graphes et ses applications — Dunod Ed. Paris.Google Scholar
  6. (5).
    'BOLSHEV L.N., 1969 — Cluster Analysis — I.S.I.R.S.S.'69Google Scholar
  7. (6).
    BONNER R.E., 1964 — On some clustering technics — IBM Journal of Research and DevelopmentGoogle Scholar
  8. (7).
    CORMACK R.M., 1971 — A review of Classification — The Journal of the Royal Statistical Society, Serie A, vol 134, Part 3Google Scholar
  9. (8).
    DIDAY E, BERGONTM, BARRE J, 1970–71–72 — Differentes notes sur la programmation de la Méthode des nuées dynamiques Note I.R.I.A., Rocquencourt 78.Google Scholar
  10. (9).
    DIDAY E, 1970 — La méthode des nuées dynamiques et la reconnaissance des formes. Cahiers de l'I.R.I.A., Rocquencourt 78Google Scholar
  11. (10).
    DIDAY E, 1971 — Une nouvelle méthode en classification automatique et reconnaissance des formes — Revue de Statistique appliquée, vol. XIX, no 2.Google Scholar
  12. (11).
    FISHER L, VAN NESS J.W. 1971 — Admissible Clustering Procedures. Biometrika, 58, 1, p. 91.Google Scholar
  13. (12).
    FREEMAN N, 1969 — Experiments in discrimination and classification. Pattern Recognition J.vol.1, no 3.Google Scholar
  14. (13).
    HALL D.J, HALL G.H, 1965 — Isodata a Novel Method of Data Analysis and Pattern Classification. Technical Report, 5R I Project 5533, Stanford Research Institute, Menlo Park, California U.S.A.Google Scholar
  15. (14).
    HILL D.R, 1967 — Mechanized Information Storage, retrieval and dissemination. Proceedings of the F.I.D/I.F.I.P. Joint Conference Rome.Google Scholar
  16. (15).
    JOHNSON S.C, 1967 — Hierarchical clustering schemes. Psychometrica 32, 241–45Google Scholar
  17. (16).
    LERMAN H, 1970 — Les bases de la classification automatique — Gauthiers-Villars, 1970Google Scholar
  18. (17).
    PICARD J, 1972 — Utilisation des méthodes d'analyse de données dans l'étude de courbes expérimentales. Thèse de 3è cycle Laboratoire de Statistique Mathématique Université Paris-6Google Scholar
  19. (18).
    ROMEDER J.M, 1969 — Methodes de discrimination. Thèse de 3è cycle Statistique Mathématique. Faculté des Sciences de Paris-6Google Scholar
  20. (19).
    ROUX M, 1968 — Un algorithme pour construire une hiérarchie particulière — Thèse de 3è cycle. Laboratoire de Statistique Mathématique, Université de Paris-6.Google Scholar
  21. (20).
    RUSPINI H.R, 1970 — Numerical Methods for fuzzy clustering. Information Science 2, p.319–350Google Scholar
  22. (21).
    SANDOR G, LENOIR P, KERBAOL M, 1971 — Une étude en ordinateur des corrélations entre les modifications des protéines sériques en pathologie humaine.C.R. Acad. Sc. Paris, t. 272, p. 331–334Google Scholar
  23. (22).
    SANDOR G, DIDAY E, LECHEVALLIER y, BARRE J, 1972 — Une étude informatique des corrélations entre les modifications des protéines sériques en pathologie humaine. C.R. Acad. Sc. Paris, t. 274, d.p. 464–467Google Scholar
  24. (23).
    SEBESTIEN G.S, 1966 — Automatic off-line Multivariate Data Analysis Proc. Fall Joint Computer Conference pp. 685–694Google Scholar
  25. (24).
    SOKHAL R.R, SNEATH P.H.R, 1963 — Numerical Tasconomy. W.H. Freeman & Co, San Francisco and London.Google Scholar
  26. (25).
    WATANABE M.S, 1971 — A unified view of clustering algorithms. IFIP Congress 71, Ijubiana, Booklet TA-2Google Scholar
  27. (26).
    ZADEH L.A, 1965 — Fuzzy sets. Inf. Control 8, pp. 338–353Google Scholar
  28. (27).
    ZAHN C.I, 1971 — Graph Theoretical methods for detecting and describing Gestalt Clusters. I.E.E.E. trans. on Computers, vol. C-20, no 1, January.Google Scholar
  29. (28).
    McQUEEN j, 1967 — Some Methods for Classification and Analysis of Multivariate Observations. 5th Berkeley Symposium on Mathematics, Statistics and probability, vol. 1, no 1, pp. 281–297Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • E. Diday
    • 1
  1. 1.I.R.I.A. Rocquencourt (78)France

Personalised recommendations