Algebraic automata and optimal solutions in pattern recognition

  • E. Astesiano
  • G. Costa
Pattern Recognition
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Decision Rule Complete Lattice Recognition Problem Finite Automaton Recognition Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARBIB, M.A. and GIVE'ON, Y. (1968) "Algebra automata I: parallel programming as a prolegomena to the categorical approach" Inform. and Control 12, 331–345.CrossRefGoogle Scholar
  2. ASTESIANO, E. (1973) "A recognition model", to appear in Pubblicazioni dell'Istituto di Matematica dell'Università di Genova.Google Scholar
  3. BRAINERD, W.S. (1968) "The minimialization of tree automata", Inform. and Control 13, 484–491.CrossRefGoogle Scholar
  4. BÜCHI, J.R. (1966) "Algebraic Theory of feedback in discrete systems — Part I" in Automata theory, edited by E.R. Caianello, Academic Press.Google Scholar
  5. COHN, P.M. (1965) "Universal algebra", Harper, New York.Google Scholar
  6. GRÄTZER, G. (1968) "Universal algebra", Von Nostrand, New York.Google Scholar
  7. GRENANDER, U. (1969) "Foundations of patterns analysis", Quart. Appl. Math. 27, 1–55Google Scholar
  8. PAVEL, M. (1969) "Fondements mathématiques de la reconnaissance des structures", Hermann, ParisGoogle Scholar
  9. THATCHER, J.W. and WRIGHT, J.B. (1968) "Generalized finite automat a theory with an application to a decision problem of second order logic", Math. Systems Theory, Vol.2. N.1, 57–81.CrossRefGoogle Scholar
  10. VERBEEK, L.A.M. (1967) "Congruence separation of subsets of a monoid with application to automat a", Math. Systems Theory, Vol.1, N.4, 315–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • E. Astesiano
    • 1
  • G. Costa
  1. 1.Istituto di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations