A convex programming method in Hilbert space and its applications to optimal control of system described by parabolic equations

  • Kazimierz Malanowski
Distributed Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3)


Hilbert Space Optimal Control Problem Parabolic Equation Quadratic Programming Control Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arienti G., Colonelli A., Kenneth P. Cahiers de IRIA 2, 81–106 (1970)Google Scholar
  2. 2.
    Balakrishnan A.V., Introduction to optimization theory in a Hilbert space, Springer Verlag, 1971.Google Scholar
  3. 3.
    Barr R.O. SIAM J. on Control 7, 415–429 (1969)CrossRefGoogle Scholar
  4. 4.
    Gilbert E.G. SIAM J. on Control 4, 61–80 (1966)CrossRefGoogle Scholar
  5. 5.
    Hadley G., Nonlinear and dynamic programming, Addison-Wesley, 1964Google Scholar
  6. 6.
    Lions J.L., Optimal control of systems governed by partial differential equations, Springer Verlag, 1971Google Scholar
  7. 7.
    Malanowski K., Arch. Autom. i Telemech. 18, 3–18 (1973)Google Scholar
  8. 8.
    Nahi N.E., Wheeler L.A., IEEE Trans. AC-12, 515–521 (1967)Google Scholar
  9. 9.
    Pascavaradi T., Narendra K.S., SIAM J. on Control 8, 396–402 (1970)CrossRefGoogle Scholar
  10. 10.
    Sakawa Y., IEEE Trans. AC-11, 420–426 (1966)Google Scholar
  11. 11.
    Veinberg M.M., Variational method and method of monotone operators, Gostiechizdat, 1972 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Kazimierz Malanowski
    • 1
  1. 1.Polish Academy of Sciences Institute of Applied CyberneticsWarsawPoland

Personalised recommendations