Advertisement

Chair-chair interconversion of six-membered rings

  • J. Edgar Anderson
Conference paper
Part of the Topics in Current Chemistry Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 45)

Keywords

Transition State Conformational Energy Chair Conformation Boat Conformation Torsional Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1) a).
    Sachse, H.: Ber. Deut. Chem. Ges. 23, 1363 (1890)CrossRefGoogle Scholar
  2. 1) b).
    Sachse, H.: Z. Physik. Chem. 10, 203 (1892)Google Scholar
  3. 1) c).
    Sachse, H.: Z. Physik. Chem. 11, 185 (1893).Google Scholar
  4. 2).
    Mohr, E.: Prakt. Chem. (2), 98, 315 (1918).CrossRefGoogle Scholar
  5. 3).
    Shoppee, C. W.: J. Chem. Soc. 1946, 1138.Google Scholar
  6. 4).
    In a review of this work written about the same time, Shoppee5) changes his wording slightly to imply a half boat structure 2 as the transition state for interconversion.Google Scholar
  7. 5).
    Shoppee, C. W.: Ann. Rep. 43, 200 (1946).Google Scholar
  8. 6).
    Beckett, C. W., Pitzer, K. S., Spitzer, R.: J. Am. Chem. Soc. 69, 2488 (1947).CrossRefGoogle Scholar
  9. 7).
    They were also implicitly aware of an entropy term favouring the transition state and thus implied a free energy of activation for inversion a few hundred calories less than 14 kcal/mol.Google Scholar
  10. 8).
    Jensen, F. R., Noyce, D. S., Sederholm, C. H., Berlin, A. J.: J. Am. Chem. Soc. 82 1256 (1960).CrossRefGoogle Scholar
  11. 9).
    For early references see 10).Google Scholar
  12. 10).
    Hendrickson, J. B.: J. Am. Chem. Soc. 83, 4537 (1961).CrossRefGoogle Scholar
  13. 11).
    Davis, M., Hassel, O.: Acta. Chem. Scand. 17, 1181 (1963).CrossRefGoogle Scholar
  14. 12).
    Altona, C., Sundaralingam, M.: Tetrahedron 26, 925 (1970) and earlier references therein.CrossRefGoogle Scholar
  15. 13).
    For a recent discussion of this technique see Ref. 14) where references to earlier reviews are given.Google Scholar
  16. 14).
    Sutherland, I. O.: Ann. Rep. N. M. R. Spectr. 4, 71 (1971).CrossRefGoogle Scholar
  17. 15).
    Eccleston, G., Wyn-Jones, E.: J. Chem. Soc. B 1971, 2469; and references therein.Google Scholar
  18. 16).
    Allinger and his coworkers 17a also concluded that there is a very small contribution (see Table 1) from bond-deformation. Others 20a) have presumed that this contribution is negligible.Google Scholar
  19. 17) a).
    Allinger, N. L., Miller, M. A., Van Catledge, F. A.: Hirsch, J. A.: J. Am. Chem. Soc. 89, 4345 (1967)CrossRefGoogle Scholar
  20. 17) b).
    Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J., Van-Catledge, F. A.: J. Am. Chem. Soc. 90, 1199 (1968)CrossRefGoogle Scholar
  21. 17) c).
    Allinger, N. L.: Personal communication, March 1971.Google Scholar
  22. 18) a).
    Schmid, H. G.: Thesis, Albert-Ludwigs-Universität, Freiburg 1967Google Scholar
  23. 18) b).
    Schmid, H. G., Jaeschke, A., Friebolin, H., Kabuss, S., Mecke, R.: Org. Mag. Res. 1, 163 (1969).CrossRefGoogle Scholar
  24. 19).
    Hendrickson, J. B.: J. Am. Chem. Soc. 89, 7036 (1967).CrossRefGoogle Scholar
  25. 20) a).
    Bucourt, R., Hainaut, D.: Bull. Soc. Chim. France 1965, 1366Google Scholar
  26. 20) b).
    Bucourt, R., Hainaut, D.: Bull. Soc. Chim: France 1967, 4562.Google Scholar
  27. 21).
    Williams, J. E., Stang, P. J., Schleyer, P. V. R.: Ann. Rev. Phys. Chem. 19, 531 (1968).CrossRefGoogle Scholar
  28. 22).
    See for example several reviews 14, 23, 24), and individual papers cited therein.Google Scholar
  29. 23).
    Anderson, J. E.: Quart. Rev. 19, 426 (1965).CrossRefGoogle Scholar
  30. 24).
    Anet, F. A. L., Bourn, A. J. R.: J. Am. Chem. Soc. 89, 760 (1967).CrossRefGoogle Scholar
  31. 25).
    Schmid, and his collaborators 18b) have made the point that there are several conformations similar to the half chair and half boat of comparable energies.Google Scholar
  32. 26).
    This point has been elegantly demonstrated by Wolfe and Campbell. 27)Google Scholar
  33. 27).
    Wolfe, S., Campbell, J. R.: Chem. Commun. 1967, 874.Google Scholar
  34. 28).
    The term “twist conformation” will be used in this review to represent the pseudorotation among boat and twist-boat conformations.Google Scholar
  35. 29).
    Pickett, H. M., Strauss, H. L.: J. Am. Chem. Soc. 92, 7281 (1970).CrossRefGoogle Scholar
  36. 30).
    Pickett, H. M., Strauss, H. L.: J. Chem. Phys. 53, 376 (1970).CrossRefGoogle Scholar
  37. 31).
    Footnote 20 in the Ref. 29), supra.Google Scholar
  38. 32).
    Unpublished results of Scholler, W. W. quoted by Dewar, M. J. S.: Topics in Curr. Chem./Fortschr. Chem. Forsch. 23, 1 (1971).Google Scholar
  39. 33).
    Literature results have been reduced to the chair → twist barrier value where necessary, though often it is not clear whether results are for chair → chair or for chair → twist interconversion. Where there is any explicit or implicit evidence that a change should be made to give the chair → twist barrier, this has been done. Values calculated at the coalescence temperature are given. In some cases where coalescence of an AB-quartet has been treated as coalescence of a doublet, results have been re-calculated on the basis of an AB quartet. Many results quoted in this review differ from these in the original literature for one or several of these reasons. In some cases barriers reported are for partially deuterated compounds but this may not be pointed out in this text.Google Scholar
  40. 34).
    Harris, R. K., Sheppard, N.: J. Mol. Spectr. 23, 231 (1967).CrossRefGoogle Scholar
  41. 35).
    Bovey, F. A., Anderson, E. W., Hood, F. P., Kornegay, R. L.: J. Chem. Phys. 40, 3099 (1964).CrossRefGoogle Scholar
  42. 36).
    Bushweller, C. H.: Thesis, University of California 1966.Google Scholar
  43. 37).
    Reisse, J., Stein, M. L., Gilles, J. M., Oth, J. F. M: Tetrahedron Letters 1969, 1917.Google Scholar
  44. 38).
    Sources of these values are given by Lowe, J. P.: Prog. Phys. Org. Chem. 6, 1 (1968).Google Scholar
  45. 39).
    Anderson, J. E., Pearson, H.: Tetrahedron Letters 1972, 2779.Google Scholar
  46. 40).
    Campbell, J. R.: Ph. D. Thesis, Queen's University. Kingston, Ontario, Canada 1969.Google Scholar
  47. 41).
    Brownstein, S.: Can. J. Chem. 40, 870 (1962).CrossRefGoogle Scholar
  48. 42).
    Harris, R. K., Sheppard, N.: Mol. Phys. 7, 595 (1964).CrossRefGoogle Scholar
  49. 43).
    The claim44 that the barrier to inversion of 1,1-dimethyl-4,4-dibenzyl-cyclohexane is greater than 20 kcal/mol is unconvincing.Google Scholar
  50. 44).
    Kwart, H., Rank, M. E., Sanchez-Obregon, R., Walls, F.: J. Am. Chem. Soc. 94, 1759 (1972).CrossRefGoogle Scholar
  51. 45).
    Werner, H., Mann, G., Muhlstadt, M., Kohler, H. J.: Tetrahedron Letters 1970, 3563.Google Scholar
  52. 46).
    Harris, R. K., Spragg, R. A.: J. Chem. Soc. B 1968, 684.Google Scholar
  53. 47).
    This assumes that at all times van der Waals' forces are repulsive. They may in certain. circumstances be attractive but this qualification is relegated to a footnote since any attractive forces involved are expected to be small from the nature of the Lennard-Jones potential. Further, in the case of bulky substituents such as we are considering here, there are inevitably large van der Waals' repulsive interactions which swamp any small attractive interactions present.Google Scholar
  54. 48).
    Friebolin, H., Schmid, H., Kabuss, S., Faisst, W.: Org. Mag. Res. 1, 147 (1969).CrossRefGoogle Scholar
  55. 49).
    Spassov, S. L., Griffith, D. L., Glazer, E. S., Nagarayan, K., Roberts, J. D.: J. Am. Chem. Soc. 89, 88 (1967).CrossRefGoogle Scholar
  56. 50).
    St. Jacques, M., Bernard, M., Vaziri, C.: Can. J. Chem. 48, 2386 (1970).CrossRefGoogle Scholar
  57. 51).
    Jefford, C. W., Hill, D. T., Ramey, K. C.: Helv. Chim. Acta 53, 1184 (1970).CrossRefGoogle Scholar
  58. 52).
    Murray, R. W., Kaplan, M. L.: Tetrahedron 27, 1575 (1967).CrossRefGoogle Scholar
  59. 53).
    We have chosen these substitution patterns since they must have axial substituents in any chair conformation, and 1,3 diaxial substituent-hydrogen interactions are expected to be the strongest van der Waals' interaction in cyclohexane, We have excluded 1,1,2,2-tetrasubstituted cyclohexanes, since 1,2 interactions are presumably the principal factors in these molecules.Google Scholar
  60. 54).
    This is a manifestation of the reflex effect, see Sandris, C., Ourissson, G.: Bull. Soc. Chim. France 1958, 1529; and subsequent references.Google Scholar
  61. 55).
    Roberts, J. D.: Chem. Brit. 1966, 529.Google Scholar
  62. 56).
    The Thorpe-Ingold effect.Google Scholar
  63. 57).
    This is discussed on pp. 200 ff of Ref.58)Google Scholar
  64. 58).
    Eliel, E. L., Allinger, N. L., Angyal, S. J., Morrison, G. A.: Conformational Analysis. New York: Interscience 1965.Google Scholar
  65. 59).
    Upper limit for cycloheptane deduced from results for 1,1-difluoro-4,4-dimethyl-cycloheptane given by Glazer, E. S., Ph. D. Thesis, California Institute of Technology, Pasadena 1965.Google Scholar
  66. 60).
    Anet, F. A. L., St. Jacques, M.: J. Am. Chem. Soc. 88, 2585 (1966).CrossRefGoogle Scholar
  67. 61).
    Anet, F. A. L., Wagner, J.: J. Am. Chem. Soc. 93, 5266 (1971).CrossRefGoogle Scholar
  68. 62).
    This result was obtained for 1,1-difluorocyclodecane, Noe, E. A., Roberts, J. D.: J. Am. Chem. Soc. 94, 2020 (1972).Google Scholar
  69. 63).
    Riddell, F. G.: Quart. Rev. (London) 21, 364 (1967).Google Scholar
  70. 64).
    Greenberg, A., Laszlo, P.: Tetrahedron Letters 1970, 2641.Google Scholar
  71. 65).
    Brune, H. A., Wulz, K., Hetz, W.: Tetrahedron 27, 3629 (1971).CrossRefGoogle Scholar
  72. 66).
    Friebolin, H., Kabuss, S., Maier, W., Lüttringhaus, A.: Tetrahedron Letters 1962, 683.Google Scholar
  73. 67).
    Values taken from Ref.68) which are refinements of those given in Ref.66).Google Scholar
  74. 68).
    Friebolin, H., Schmid, H. G., Kabuss, S., Faisst, W.: Org. Mag. Res. 1, 67 (1969).CrossRefGoogle Scholar
  75. 69).
    This is a consequence principally of carbon-oxygen bonds being shorter than carbon-carbon bonds in cyclohexane.Google Scholar
  76. 70).
    Since the ultimate effect of a large number of 1,3-diaxial interactions in a six-membered ring is to cause a molecule to adopt a twist conformation, see the section on the twist conformation below, it is reasonable to assume such interactions are considerably relieved in the twist conformation and somewhat relieved in the intermediate half-chair conformation.Google Scholar
  77. 71).
    Lambert, J. B., Keske, R. G., Weary, D. K.: J. Am. Chem. Soc. 89, 5921 (1967).CrossRefGoogle Scholar
  78. 72).
    Lambert, J. B., Keske, R. G., Carhart, R. E., Jovanovich, A. P.: J. Am. Chem. Soc. 89, 3761 (1967).CrossRefGoogle Scholar
  79. 73).
    Calculated from the value for 20d., using a factor derived from tetramethyl analogues 74).Google Scholar
  80. 74).
    Cleason, G., Androes, G. M., Calvin, M.: J. Am. Chem. Soc. 82, 4428 (1960); 83 4357 (1961).CrossRefGoogle Scholar
  81. 75).
    Anderson, J. E.: J. Am. Chem. Soc. 91, 6374 (1969).CrossRefGoogle Scholar
  82. 76).
    Lüttringhaus, A., Kabuss, S., Maier, W., Friebolin, H.: Z. Naturforsch. 166, 761 (1961).Google Scholar
  83. 77).
    Riddell, F. G.: J. Chem. Sec. B 1967, 560.Google Scholar
  84. 78).
    Anet, F. A. L., Sandstrom, J.: Chem. Commun. 1971, 1558.Google Scholar
  85. 79).
    Jensen, F. R., Neese, R. A.: J. Am. Chem. Soc. 92, 6329 (1971).CrossRefGoogle Scholar
  86. 80).
    Pedersen, B., Schlaug, J.: Acta Chem. Scand. 22, 1705 (1968).Google Scholar
  87. 81).
    Lehn, J. M., Riddell, F. G., Price, B. J., Sutherland, I. O.: J. Chem. Soc. B 1967, 387.Google Scholar
  88. 82).
    Anderson, J. E.: J. Chem. Soc. B 1971, 2030.Google Scholar
  89. 83).
    Bushweller, C. H., O'Neill, J. W., Bilofsky, H. S.: Tetrahedron 27, 3065 (1971).CrossRefGoogle Scholar
  90. 84).
    The barriers to methyl group rotation in tetramethyl silane and dimethylselenane are 1.4 and 1.5 kcal/mol respectively38). Bond lengths are carbon-silicon, 1.94, carbon-selenium 1.94, carbon-tellurium 2.14; based on the sum of covalent radii85).Google Scholar
  91. 85).
    Pauling, L.: The nature of the chemical bond, 3rd edit., p. 225. Ithaca, N.Y.: Cornell University Press 1960.Google Scholar
  92. 86).
    Hutchins, R. O., Kopp, L., Eliel, E. L.: J. Am. Chem. Soc. 90, 7174 (1968).CrossRefGoogle Scholar
  93. 87).
    Murray, R. W., Story, P. R., Kaplan, M. L.: J. Am. Chem. Soc. 88, 526 (1966).CrossRefGoogle Scholar
  94. 88).
    Bushweller, C. H., Golini, J., Rao, G. U., O'Neill, J. W.: J. Am. Chem. Soc. 92, 3055 (1970).CrossRefGoogle Scholar
  95. 89).
    Feher, F., Degan, B., Söhngen, B.: Angew. Chem. Intern. Ed. Engl. 7, 301 (1968). Lower limit for barrier on basis of data given.CrossRefGoogle Scholar
  96. 90).
    A recent listing of these can be found in Ref.14).Google Scholar
  97. 91).
    Anderson, J. E.: Chem. Commun. 1969, 669.Google Scholar
  98. 92).
    Orohovats, A. S., Dimitrov, V. S., Spassov, S. L.: J. Mol. Struct. 6, 405 (1970).CrossRefGoogle Scholar
  99. 93).
    Anderson, J. E.: Chem. Commun. 1970, 417.Google Scholar
  100. 94).
    Jones, V. I. P., Ladd, J. A.: Trans. Faraday Soc. 66, 2998 (1970).Google Scholar
  101. 95).
    Lambert, J. B., Gosnell, Jr., J. L., Bailey, D. S., Greifenstein, L. G.: Chem. Commun. 1004 (1970). It is not clear here whether results are for chair-boat or chair-chair interconversion.Google Scholar
  102. 96).
    The results in Tables 8 and 9 are slightly different from those in references 91) and 93) due to a correction in temperature measurement.Google Scholar
  103. 97).
    Lambert, J. B.: J. Am. Chem. Soc. 89, 1836 (1967).CrossRefGoogle Scholar
  104. 98).
    Jensen, F. R., Beck, B. H.: Tetrahedron Letters 1966, 4523.Google Scholar
  105. 99).
    Riddell, F. G., Robinson, M. J. T.: Chem. Commun. 1965, 227.Google Scholar
  106. 100).
    Gerig, J. T., Roberts, J. D.: J. Am. Chem. Soc. 88, 2791 (1966).CrossRefGoogle Scholar
  107. 101).
    Geens, A., Tavernier, D., Anteunis, M.: Chem. Commun. 1967, 1088.Google Scholar
  108. 102).
    Altman, A., Gilboa, H., Ginsburg, D., Loewenstein, A.: Tetrahedron Letters 1967, 1329)Google Scholar
  109. 103).
    Lack, R. E., Roberts, J. D.: J. Am. Chem. Soc. 90, 6997 (1968).CrossRefGoogle Scholar
  110. 104).
    For a review see p. 469 of Ref.58).Google Scholar
  111. 105).
    Bushweller, C. H., Golini, J., Rao, G. U., O'Neill, J. W.: J. Am. Chem. Soc. 92, 3055 (1970) and earlier work cited therein.CrossRefGoogle Scholar
  112. 106).
    Bushweller, C. H., Rao, G. U., Bissett, J. H.: J. Am. Chem. Soc. 93, 3058 (1971).CrossRefGoogle Scholar
  113. 107).
    Vintner, J. G., Hoffmann, H. M. R.: Private communication.Google Scholar
  114. 108).
    Kessler, H., Gusowsky, V., Hanack, M.: Tetrahedron Letters 1968, 4665.Google Scholar
  115. 109).
    Riecker, A., Kessler, H.: Tetrahedron Letters 1969, 1227; see footnote 10.Google Scholar
  116. 110) a).
    Thermochemical data, Pihlaja, K., Luoma, S.: Acta Chem. Scand. 22, 2401 (1968)Google Scholar
  117. 110) b).
    1H nuclear magnetic resonance, Nader, F. W., Eliel, E. L.: J. Am. Chem. Soc. 92, 3050 (1970)CrossRefGoogle Scholar
  118. 110) c).
    optical rotation measurements, Tocanne, J. F.: Bull. Soc. Chim. France 1970, 750Google Scholar
  119. 110) d).
    ebullioscopic data, Kellie, G. M., Riddell, F. G.: Chem. Commun. 1972, 42Google Scholar
  120. 110) e).
    13C nuclear magnetic resonance, Kellie, G. M., Riddell, F. G. J. Chem. Soc. B. 1971, 1030.Google Scholar
  121. 111).
    Anet, F. A. L., Haq, M. Z.: J. Am. Chem. Soc. 87, 3147 (1965).CrossRefGoogle Scholar
  122. 112).
    Jensen, F. R., Bushweller, C. H.: J. Am. Chem. Soc. 87, 3285 (1965).CrossRefGoogle Scholar
  123. 113).
    Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J.: J. Am. Chem. Soc. 90, 5773 (1968).CrossRefGoogle Scholar
  124. 114).
    Jensen, F. R., Bushweller, C. H.: J. Am. Chem. Soc. 91, 5774 (1969).CrossRefGoogle Scholar
  125. 115).
    Anderson, J. E., Roberts, J. D.: J. Am. Chem. Soc. 92, 97 (1970).CrossRefGoogle Scholar
  126. 116).
    Gilboa, H., Altman, J. E., Loewenstein, A.: J. Am. Chem. Soc. 91, 6062 (1969).CrossRefGoogle Scholar
  127. 117).
    Jensen, F. R., Beck, B. H.: J. Am. Chem. Soc. 90, 1066 (1968).CrossRefGoogle Scholar
  128. 118).
    Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminsky, I. J.: J. Am. Chem. Soc. 91, 337 (1969).CrossRefGoogle Scholar
  129. 119).
    Allinger, N. L., Tribble, M. T., Miller, M. A.: Tetrahedron 28, 1173 (1972).CrossRefGoogle Scholar
  130. 120).
    Allinger, N. L., Allinger, J., Da Rooge, M. A.: J. Am. Chem. Soc. 86, 4061 (1964).CrossRefGoogle Scholar
  131. 121).
    Bernard, M., St. Jacques, M.: Chem. Commun. 1970, 1097.Google Scholar
  132. 122).
    St. Jacques, M., Bernard, M., Canuel, L.: Results presented at 2nd International Symposium on Nuclear Magnetic Resonance, Guildford, United Kingdom, July 1972.Google Scholar
  133. 123).
    Gerig, J. T.: J. Am. Chem. Soc. 90, 1065 (1968).CrossRefGoogle Scholar
  134. 124).
    Jensen, F. R., Beck, B. H.: J. Am. Chem. Soc. 90, 1066 (1968).CrossRefGoogle Scholar
  135. 125).
    Gerig, J. T., Rimmerman, R. A.: J. Am. Chem. Soc. 92, 1219 (1970).CrossRefGoogle Scholar
  136. 126).
    Bernard, M. St. Jacques, M.: Can. J. Chem. 48, 3039 (1970).CrossRefGoogle Scholar
  137. 127).
    St. Jacques, M., Bernard, M.: Can. J. Chem. 47, 2911 (1969).Google Scholar
  138. 128) a).
    Preliminary communications, the full report of which is referred to, are not included. Yamaguchi, S., Brownstein, S.: J. Phys. Chem. 68, 1572 (1964)CrossRefGoogle Scholar
  139. 128) b).
    Corfield, G. C., Crawshaw, A.: J. Chem. Soc. B 1969, 495Google Scholar
  140. 128) c).
    Jensen, F. R., Bushweller, C. H.: J. Am. Chem. Soc. 88, 4279 (1966)CrossRefGoogle Scholar
  141. 128) d).
    Abraham, R. J., MacDonald, D. B.: Chem. Commun. 1966, 188Google Scholar
  142. 128) e).
    Dalling, D. K., Grant, D. M., Johnson, L. F.: J. Am. Chem. Soc. 93, 3678 (1971)CrossRefGoogle Scholar
  143. 128) f).
    de Jongh, F., Wynberg, H.: Tetrahedron 22, 583 (1966)CrossRefGoogle Scholar
  144. 128) g).
    Reusch, W., Anderson, D. F.: Tetrahedron 22, 583 (1966)CrossRefGoogle Scholar
  145. 128) h).
    Gerig, J. T., Ortiz, C. E.: J. Am. Chem. Soc. 92, 7121 (1970)CrossRefGoogle Scholar
  146. 128) i).
    Ellet, J. D. Jr., Haeberlin, G., Waugh, J. S.: J. Am. Chem. Soc. 92, 411 (1970)CrossRefGoogle Scholar
  147. 128) j).
    Atalla, R. H.: Spectrochim. Acta 25A, 889 (1969)Google Scholar
  148. 128) k).
    Bhacca, N. S., Horton, D.: J. Am. Chem. Soc. 89, 5993 (1967)CrossRefGoogle Scholar
  149. 128) l).
    Durette, P. L., Horton, D.: Chem. Commun. 1969, 516Google Scholar
  150. 128) m).
    Kalff, M. T., Havinga, E.: Rec. Trav. Chim. 85, 467 (1966)CrossRefGoogle Scholar
  151. 128) n).
    Angiolini, L., Jones, R. A. Y., Katritzky, A. R.: Tetrahedron Letters 1971, 2209Google Scholar
  152. 128) o).
    Kopf, H., Block, B., Schmidt, M.: Ber. 101, 272 (1968)CrossRefGoogle Scholar
  153. 128) p).
    Lambert, J. B., Mixan, C. E., Bailey, D. S.: J. Am. Chem. Soc. 94, 208 (1972)CrossRefGoogle Scholar
  154. 128) q).
    Lee, J., Orrell, K. G.: Trans Faraday Soc. 63, 16 (1967)CrossRefGoogle Scholar
  155. 128) r).
    Lett, R. G., Petrakis, L., Ellis, A. F., Jensen, A. K.: J. Phys. Chem. 74, 2816 (1970)CrossRefGoogle Scholar
  156. 128) s).
    Murray, R. W., Kaplan, M. L.: Tetrahedron 25, 1651 (1969)CrossRefGoogle Scholar
  157. 128) t).
    Riddell, F. G., Lehn, J. M.: J. Chem. Soc. B. 1968, 1224Google Scholar
  158. 128) u).
    Schacht, R. J., Rinehart, K. L.: J. Am. Chem. Soc. 89, 2239 (1967)CrossRefGoogle Scholar
  159. 128) v).
    Wood, G., McIntosh, J. M., Miskow, M.: Tetrahedron Letters 1970, 4895Google Scholar
  160. 128) w).
    Wood, G., Srivastava, R. M.: Tetrahedron Letters 1971, 2937Google Scholar
  161. 128) x).
    Schneider, H.-J., Price, R., Keller, T.: Angew. Chem. Intern. Ed. Engl. 10, 730 (1971)CrossRefGoogle Scholar
  162. 128) y).
    Kellie, G. M., Riddell, F. G.: Topics Stereochem. in the press.Google Scholar
  163. 129).
    Wiberg, K. B., Boyd, R. H.: J. Am. Chem. Soc. 94, 8426 (1972).CrossRefGoogle Scholar
  164. 130).
    Hoyland, J. R.: J. Chem. Phys. 50, 2774 (1969).Google Scholar
  165. 131).
    Komornicki, A., McIver, J. W.: J. Am. Chem. Soc. 95, 4512 (1973).CrossRefGoogle Scholar
  166. 132).
    Anet, F. A. L., Chmurny, G. N., Krane, J.: J. Am. Chem. Soc. 95, 4423 (1973).CrossRefGoogle Scholar
  167. 133).
    Lambert, J. B., Mixan, C. E., Johnson, D H.: Tetrahedron Letters, 1972, 4335.Google Scholar
  168. 134).
    Featherman, S. I., Quin, L. D.: J. Am. Chem. Soc. 95, 1699 (1973).CrossRefGoogle Scholar
  169. 135).
    Farnham, W. B.: J. Am. Chem. Soc. 94, 6857 (1972).CrossRefGoogle Scholar
  170. 136).
    Levin, R. H., Roberts, J. D., Kwart, H., Walls, F.: J. Am. Chem. Soc. 94, 6856 (1972).CrossRefGoogle Scholar
  171. 137).
    Vinter, J. G., Hoffmann, H. M. R.: J. Am. Chem. Soc. 95, 3051 (1973).CrossRefGoogle Scholar
  172. 138).
    Gittens, V. M., Eccleston, G., Wyn-Jones, E., Orville-Thomas, W. J.: Faraday Symp. Chem. Soc. 6, 106 (1972).CrossRefGoogle Scholar
  173. 139).
    Angiolini, L., Duke, R. P., Jones, R. A. Y., Katritzky, A. R.: J. Chem. Soc. Perkin II 1972, 674.Google Scholar
  174. 140).
    Tavernier, D., Anteunis, M., Hosten, N.: Tetrahedron Letters 1973, 75.Google Scholar
  175. 141).
    Yamamoto, O., Yamagisawa, M., Hayamishi, K., Kotowycz, G.: J. Mag. Res. 9, 216 (1973).Google Scholar
  176. 142).
    Lambert, J. B., Mixan, C. E., Johnson, D. H.: J. Am. Chem. Soc. 95, 4634 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Verlag 1974

Authors and Affiliations

  • J. Edgar Anderson
    • 1
  1. 1.Department of ChemistryUniversity CollegeLondonEngland

Personalised recommendations