The cell surface in cell interactions

  • R. S. Turner
  • M. M. Burger
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 68)


Sialic Acid Cell Interaction Wheat Germ Agglutinin Aggregation Factor Contact Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abercrombie, M.: Contact inhibition in tissue culture. In Vitro 6, 128–142 (1970).PubMedGoogle Scholar
  2. 2.
    Abercrombie, M., Heaysman, J. E. M.: Observation on the social behavior of cells in tissue culture. II. “Monolayering” of fibroblasts. Exp. Cell Res. 6, 293–306 (1954).PubMedGoogle Scholar
  3. 3.
    Abercrombie, M., Ambrose, E. J.: The surface properties of cancer cells: a review. Cancer Res. 22, 525–548 (1962).PubMedGoogle Scholar
  4. 4.
    Agrawal, B. B. S., Goldstein, I. J.: Protein-carbohydrate interaction VI isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim. biophys. Acta (Amst.) 147, 262 (1970).Google Scholar
  5. 5.
    Akedo, H., Mori, Y., Tanigaki, Y., Shinkai, K., Morita, K.: Isolation of concanavalin A binding protein(s) from rat erythrocyte stroma. Biochim. biophys. Acta (Amst.) 271, 478–487 (1972).Google Scholar
  6. 6.
    Allen, D., Auger, J., Crumpton, M. J.: Glycoprotein receptors for concanavalin A isolated from pig lymphocyte plasma membranes by affinity chromatography in sodium deoxycholate. Nature (Lond.) New Biol. 236, 23–25 (1972).Google Scholar
  7. 7.
    Antley, R. M., Fox, A. J.: Aggregation in Drosophila. Neurosci. Res. Progr. Bull. 10 (3), 304–309 (1972).Google Scholar
  8. 8.
    Amstrong, P. B., Niederman, R.: Reversal of tissue position after cell sorting. Develop. Biol. 28, 518–527 (1972).Google Scholar
  9. 9.
    Arndt-Jovin, P. J., Berg, P.: Quantitative binding of I125 concanavalin A to normal and transformed cells. J. Virol. 8, 716–721 (1971).PubMedGoogle Scholar
  10. 10.
    Attardi, D. J., Sperry, R. W.: Preferential selection of central pathways by regenerating optic-fibers. Exp. Neurol. 7, 46–64 (1963).PubMedGoogle Scholar
  11. 11.
    Aub, J. C., Tieslau, C., Lankester, A.: Reactions of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc. nat. Acad. Sci. (Wash.) 50, 613–619 (1963).PubMedGoogle Scholar
  12. 12.
    Baker, J. B., Humphreys, T.: Turnover of molecules which maintain the normal surfaces of contact inhibited cells. Science 175, 905–906 (1972).PubMedGoogle Scholar
  13. 13.
    Benjamin, T. L., Burger, M. M.: Absence of a cell membrane alteration function in non-transforming mutants of polyoma virus. Proc. nat. Acad. Sci. (Wash.) 67, 929–934 (1970).PubMedGoogle Scholar
  14. 14.
    Bodian, D.: A model of synaptic and behavioral ontogeny, p. 129–140. In: The neurosciences: 2nd study program, editor-in-chief F. O. Schmitt. New York: Rockefeller Univ. Press 1970. 1068 pp.Google Scholar
  15. 15.
    Borek, C.: Neoplastic transformation in vitro of a clone of adult liver epithelial cells into differentiated hetatoma-like cells under conditions of nutritional stress. Proc. nat. Acad. Sci. (Wash.) 69, 956–959 (1972).PubMedGoogle Scholar
  16. 16.
    Borek, C., Sachs, L.: The difference in contact inhibition of cell replication between normal cells and cells transformed by different carcinogens. Proc. nat. Acad. Sci. (Wash.) 56, 1705–1711 (1966).PubMedGoogle Scholar
  17. 17.
    Borek, C., Grob, M., Burger, M. M.: Surface alteration in transformed epithelial and fibroblastic cells in culture: A disturbance of membrane biosynthesis versus degradation? Exp. Cell Res. in press (1973).Google Scholar
  18. 18.
    Boon, J., Tiedemann, H., Tiedemann, H.: Inhibitors in amphibian morphogenesis: Enzymic degradation of an inhibitor for the vegetalizing factor. J. Embryol. exp. Morph. 28, 77–86 (1972).Google Scholar
  19. 19.
    Bosmann, H. B.: Glycoprotein degradation. Glycosidases in fibroblasts transformed by oncogenic viruses. Exp. Cell Res. 54, 217–221 (1969).PubMedGoogle Scholar
  20. 20.
    Bosmann, H. B.: Cell surface glycosyl transferases and acceptors in normal and RNA-and DNA-virus transformed fibroblasts. Biochem. biophys. Res. Commun. 48, 523–529 (1972).PubMedGoogle Scholar
  21. 21.
    Bosmann, H. B.: Elevated glycosidases and proteolytic enzymes in cells transformed by RNA tumor viruses. Biochim. biophys. Acta (Amst.) 264, 339–343 (1972).PubMedGoogle Scholar
  22. 22.
    Bosmann, H. B., Hagopian, A., Eylar, E. H.: Membrane glycoprotein biosynthesis: Changes in levels of glycosyl transferases in fibroblasts transformed by oncogenic viruses. J. Cell Physiol. 72, 81–88 (1968).PubMedGoogle Scholar
  23. 23.
    Bosmann, H. B., Eylar, E. H.: Collagen-glucosyl transferase in fibroblasts transformed by oncogenic viruses. Nature (Lond.) 218, 528–583 (1968).Google Scholar
  24. 24.
    Buck, C. A., Glick, M. C., Warren, L.: A comparative study of glycoproteins from the surface of control and Rous sacroma virus transformed hamster cells. Biochemistry 9, 4567–4576 (1970).PubMedGoogle Scholar
  25. 25.
    Buck, C. A., Glick, M. C., Warren, L.: Glycopeptides from the surface of control and virus-transformed cells. Science 172, 169–171 (1971).PubMedGoogle Scholar
  26. 26.
    Buck, C. A., Glick, M. C., Warren, L.: Effect of growth on the glycoproteins from the surface of control and Rous sacroma virus transformed hamster cells. Biochemistry 10, 2176–2180 (1971).PubMedGoogle Scholar
  27. 27.
    Buck, C. A., Glick, M. C., Hartman, J. F., Warren, L.: Presented to the 10th Int. Cancer Congr., Houston 1970.Google Scholar
  28. 28.
    Burger, M. M.: Isolation of a receptor complex for a tumour specific agglutinin from the neoplastic cell surface. Nature (Lond.) 219, 499–500 (1968).PubMedGoogle Scholar
  29. 29.
    Burger, M. M.: A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc. nat. Acad. Sci. (Wash.) 62, 994–1001 (1969).PubMedGoogle Scholar
  30. 30.
    Burger, M. M.: Changes in the chemical architecture of transformed cell surfaces, p. 107–119. In: Permeability and function of biological membranes, ed. L. Bolis. Amsterdam: North-Holland Publ. 1970.Google Scholar
  31. 31.
    Burger, M. M.: Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature (Lond.) 227, 170–171 (1970).PubMedGoogle Scholar
  32. 32.
    Burger, M. M.: Forssman antigen exposed on surface membrane after viral transformation. Nature (Lond.) New Biol. 231, 125–126 (1971).Google Scholar
  33. 33.
    Burger, M. M.: The significance of surface structure changes for growth control under crowded conditions, p. 45–69. In: Ciba Foundation Symposium on Growth Control in Cell Cultures, ed. G. E. W. Wolstenholme, J. Knight. London: Churchill Livingstone 1971.Google Scholar
  34. 34.
    Burger, M. M.: Fed. Proc. (in press) (1972).Google Scholar
  35. 35.
    Burger, M. M., Goldberg, A. R.: Identification of a tumor-specific determinant on neoplastic cell surfaces. Proc. nat. Acad. Sci. (Wash.) 57, 359–366 (1967).PubMedGoogle Scholar
  36. 36.
    Burger, M. M., Noonan, K. D.: Restoration of normal growth by covering of agglutinin sites on tumor cell surface. Nature (Lond.) 228, 512–515 (1970).PubMedGoogle Scholar
  37. 37.
    Burger, M. M., Lemon, L. M., Radius, R.: Sponge aggregation. I. Are carbohydrates involved? Biol. Bull. 141, 380 (1971).Google Scholar
  38. 38.
    Burger, M. M., Bombik, B. M., Noonan, K. D.: Cell surface alterations in transformed tissue culture cells and their possible significance in growth control. J. invest. Derm. 59, 24–26 (1972).PubMedGoogle Scholar
  39. 39.
    Burger, M. M., Martin, G. L.: Agglutination of cells transformed by Rous sarcoma virus by wheat germ agglutinin and concanavalin A. Nature (Lond.) New Biol. 237, 9–12 (1972).Google Scholar
  40. 40.
    Burger, M. M., Bombik, B. M., Breckenridge, B. Mcl., Sheppard, G. R.: Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nature (Lond.) New Biol. 239, 161–163 (1972).Google Scholar
  41. 41.
    Bürk, R. R.: Reduced adenylcyclase activity in a polyoma virus transformed cell line. Nature (Lond.) 219, 1272–1275 (1968).Google Scholar
  42. 42.
    Burnet, F. M.: A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20, 67 (1957).Google Scholar
  43. 43.
    Castor, L. M.: Contact inhibition of cell division and cell movement. J. invest. Derm. 59, 27–32 (1972).PubMedGoogle Scholar
  44. 44.
    Ceccarini, C., Eagle, H.: pH as a determinant of cellular growth and contact inhibition. Proc. nat. Acad. Sci. (Wash.) 68, 229–233 (1970).Google Scholar
  45. 45.
    Ceccarini, C., Eagle, H.: Introduction and reversal of contact inhibition of growth by pH modification. Nature (Lond.) New Biol. 233, 271 (1971).Google Scholar
  46. 46.
    Caviness, V. S., Sidman, R. L.: Olfactory structures of the forebrain in the reeler mutant mouse. J. comp. Neurol. 145, 85–104 (1972).PubMedGoogle Scholar
  47. 47.
    Cline, M. J., Livingston, D. C.: Binding of H3 concanavalin A by normal and transformed cells. Nature (Lond.) New Biol. 232, 155–156 (1971).Google Scholar
  48. 48.
    Cohen, M. H.: Models for the control of development. Symp. Soc. exp. Biol. 25, 455–476 (1971).PubMedGoogle Scholar
  49. 49.
    Colwin, A. L., Colwin, L. H.: Role of the gamete membranes in fertilization, p. 233–279. In: Cellular membranes in development (M. Locke). New York: Academic Press 1964.Google Scholar
  50. 50.
    Coman, D. R.: Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas. Cancer Res. 4, 625–629 (1944).Google Scholar
  51. 51.
    Crain, S.: Bioelectric interactions between cultured fetal rodent spinal cord and skeletal muscle after innervation in vitro. J. exp. Zool. 173, 353–370 (1970).PubMedGoogle Scholar
  52. 52.
    Crick, F. H. C.: Diffusion in embryogenesis. Nature (Lond.) 225, 420–422 (1970).PubMedGoogle Scholar
  53. 53.
    Crick, F. H. C.: The scale of pattern formation. Symp. Soc. exp. Biol. 25, 429–438 (1971).PubMedGoogle Scholar
  54. 54.
    Culp, L. A., Grimes, W. J., Black, P. H.: Contact-inhibited revertant cell lines isolated from SV40-transformed cells. I. Biologic, virologic and chemical properties. J. Cell Biol. 50, 682–690 (1971).PubMedGoogle Scholar
  55. 55.
    Culp, L. A., Black, P. H.: Contact-inhibited revertant cell lines isolated from simian virus 40-transformed cells. III. Concanavalin-A selected revertant cells. J. Virol. 9, 611–620 (1972).PubMedGoogle Scholar
  56. 56.
    Cumar, F. A., Brady, R. O., Kolodny, E. W., McFarland, V. W., Mora, P. C.: Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines. Proc. nat. Acad. Sci. (Wash.) 67, 757–764 (1970).PubMedGoogle Scholar
  57. 57.
    Curtis, A. S.: Pattern and mechanism in the reaggregation of sponges. Nature (Lond.) 196, 245–248 (1962).Google Scholar
  58. 58.
    Curtis, A. S. G.: Reexamination of specific sponge cell aggregation. Nature (Lond.) 226, 260–261 (1970).PubMedGoogle Scholar
  59. 59.
    Curtis, A. S. G.: On the occurrence of specific adhesions between cells. J. Embryol. exp. Morph. 23, 253–272 (1970).PubMedGoogle Scholar
  60. 60.
    Curtis, A. S. G., Vyver, G. van de: Control of cell adhesion in a morphogenetic system. J. Embryol. exp. Morph. 26, 295–312 (1971).PubMedGoogle Scholar
  61. 61.
    Dan, J. C.: Morphogenetic aspects of acrosome formation and reaction. In: Advances in morphogenesis, ed. M. Abercrombie, J. Bracket, T. J. King, vol. 8, 318 pp. New York: Academic Press 1970.Google Scholar
  62. 62.
    DeLong, G. R.: Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Develop. Biol. 22, 563–583 (1970).PubMedGoogle Scholar
  63. 63.
    DeLong, G. R., Sidman, R. L.: Alignment defect of reaggregating cells in cultures of developing brains of reeler mutant mice. Develop. Biol. 22, 584–600 (1970).Google Scholar
  64. 64.
    Den, H., Schultz, A. M., Basu, M., Roseman, S.: Glycosyltransferase activities in normal and polyoma-transformed BHK cells. J. biol. Chem. 246, 2721–2723 (1971).PubMedGoogle Scholar
  65. 65.
    Domnina, S. V., Ivanova, O. G., Margolis, S. B., Olshervskaja, L. V., Rovensky, J. A., Vasiliev, J. M., Gelfand, J. M.: Defective formation of lamellar cytoplasm by neoplastic fibroblasts. Proc. nat. Acad. Sci. (Wash.) 69, 243–252 (1972).Google Scholar
  66. 66.
    Dulbecco, R.: Behavior of tissue culture cells infected with polyoma virus. Proc. nat. Acad. Sci. (Wash.) 67, 1214–1220 (1970).PubMedGoogle Scholar
  67. 67.
    Dulbecco, R.: Topoinhibition and serum requirement of transformed and untransformed cells. Nature (Lond.) 227, 802–806 (1970).PubMedGoogle Scholar
  68. 68.
    Eckhart, W., Dulbecco, R., Burger, M. M.: Temperature-dependent surface changes in cells infected or transformed by a thermosensitive mutant of polyoma virus. Proc. nat. Acad. Sci. (Wash.) 68, 283–286 (1971).PubMedGoogle Scholar
  69. 69.
    Etzler, M. E., Kabat, E. A.: Purification and characterization of a lecitin (plant hemogglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry 9, 869–877 (1970).PubMedGoogle Scholar
  70. 70.
    Fishbach, G. D.: Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Develop. Biol. 28, 407–429 (1972).Google Scholar
  71. 71.
    Fogel, M., Sachs, L.: The induction of Forssman-antigen synthesis in hamster and mouse cells in tissue culture, as detected by the fluorescent-antibody technique. Exp. Cell Res. 34, 448–462 (1964).PubMedGoogle Scholar
  72. 72.
    Fox, A. S., Horikawa, M., Ling, L.-N. L.: The use of Drosophila cell cultures in studies of differentiation, p. 65–84. In: In Vitro, vol. 3, Differentiation and defense mechanisms in lower organisms, ed. M. M. Sigel. Baltimore: Williams and Wilkins 1968.Google Scholar
  73. 73.
    Fox, T. O., Sheppard, J. R., Burger, M. M.: Cyclic membrane changes in animal cells: Transformed cells permanently display a surface architecture detected in normal cells only during mitosis. Proc. nat. Acad. Sci. (Wash.) 68, 244–247 (1971).PubMedGoogle Scholar
  74. 74.
    Galtsoff, P. S.: The ameboid movement of dissociated sponge cells. Biol. Bull. 45, 153–161 (1923).Google Scholar
  75. 75.
    Galtsoff, P. S.: Regeneration after dissociation (an experimental study on sponges). I. Behavior of dissociated cells of Microciona prolifera under normal and abnormal conditions. J. exp. Zool. 42, 183–221 (1925).Google Scholar
  76. 76.
    Galtsoff, P. S.: Regeneration after dissociation (an experimental study on sponges). II. Histogenesis of Microciona prolifera. J. exp. Zool. 42, 223–251 (1925).Google Scholar
  77. 77.
    Gantt, R. R., Martin, J. I., Evans, V. J.: Agglutination of in vitro cultured neoplastic and non-neoplastic cell lines by a wheat germ agglutinin. J. nat. Cancer Inst. 42, 369–373 (1969).PubMedGoogle Scholar
  78. 78.
    Garber, B. B., Moscona, A. A.: Enhancement of aggregation of embryonic brain cells by extracellular materials form cultures of brain cells. J. Cell Biol. 43, (abstr.) (1969).Google Scholar
  79. 79.
    Garber, B. B., Moscona, A. A.: Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain. Develop. Biol. 27, 217–234 (1972).PubMedGoogle Scholar
  80. 80.
    Garber, B. B., Moscona, A. A.: Reconstruction of brain tissue from cell suspensions. II. Specific enhancement of aggregation of embryonic cerebral cells by supernatant from homologous cell cultures. Develop. Biol. 27, 235–243 (1972).PubMedGoogle Scholar
  81. 81.
    Gasic, G. J., Galanti, N. L.: Proteins and disulfide groups in the aggregation of dissociated cells of sea sponges. Science 151, 203–235 (1966).PubMedGoogle Scholar
  82. 82.
    Gaze, R. M.: The formation of nerve connections. London: Academic Press 1970.Google Scholar
  83. 83.
    Gaze, R. M., Sharma, S. C.: Axial differences in the reinnervation of the optic tectum by regenerating goldfish optic nerve fibres. Exp. Brain Res. 10, 171–181 (1970).PubMedGoogle Scholar
  84. 84.
    Gaze, R. M., Chung, S.-H., Keating, M. J.: The development of the retinotectal protection in Xenopus. Nature (Lond.) 236, 133–135 (1972).Google Scholar
  85. 85.
    Gierer, A., Berking, S., Bode, J., David, C. N., Flick, K., Hansmann, G., Schaller, H., Trenkner, E.: Regeneration of hydra from reaggregated cells. Nature (Lond.) New Biol. 239, 98–101 (1972).Google Scholar
  86. 86.
    Glick, J. L., Goldberg, A. R., Pardee, A. B.: The role of sialic acid in the release of proteins from L1210 leukemia cell. Cancer Res. 26, 1774–1777 (1966).PubMedGoogle Scholar
  87. 87.
    Granner, D., Chase, L. R., Aurbach, G. D., Tomkins, G. M.: Tyrosine aminotransferase: enzyme induction independent of adenosine 3′,5′-monophosphate. Science 162, 1018–1020 (1968).PubMedGoogle Scholar
  88. 88.
    Grimes, W. J.: Sialic acid transferases and sialic acid levels in normal and transformed cells. Biochemistry 9, 5083–5092 (1970).PubMedGoogle Scholar
  89. 89.
    Grobstein, C.: Mechanism of organogenetic tissue interaction. Nat. Cancer Inst. Monogr. 26, 279–299 (1967).PubMedGoogle Scholar
  90. 90.
    Hakomori, S.: Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc. nat. Acad. Sci. (Wash.) 67, 1741–1747 (1970).PubMedGoogle Scholar
  91. 91.
    Hakomori, S., Jeanloz, R. W.: Isolation of a glycolipid containing fucose, galactose, glucose, and glucosamine from human cancerous tissue. J. biol. Chem. 239, PC 3606–3706 (1964).Google Scholar
  92. 92.
    Hakomori, S., Koscielak, J., Bloch, K. J., Jeanloz, R. W.: Immunological relationship between blood group substances and a fucose-containing glycolipid of human adenocarcinoma. J. Immunol. 98, 31–38 (1967).PubMedGoogle Scholar
  93. 93.
    Hakomori, S., Murakami, W. T.: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. nat. Acad. Sci. (Wash.) 59, 254–261 (1968).PubMedGoogle Scholar
  94. 94.
    Hakomori, S., Kijimoto, S.: Forssman reactivity and cell contacts in cultured hamster cells. Nature (Lond.) New Biol. 239, 87–88 (1968).Google Scholar
  95. 95.
    Hamburger, V.: Emergence of nervous coordination. Origins of integrated behavior, p. 251–271. In: The emergence of order in developing systems, ed. M. Locke. New York: Academic Press 1968. 350 pp.Google Scholar
  96. 96.
    Hartman, J. F., Gwatkin, R. B. L., Hutchison, C. F.: Early contact interactions between mammalian gametes in vitro: evidence that the vitellus influences adherence between sperm and zona pellucida. Proc. nat. Acad. Sci. (Wash.) 69, 2767–2769 (1972).Google Scholar
  97. 97.
    Holley, R. W., Kiernan, J. A.: “Contact inhibition” of cell division in 3T3 cells. Proc. nat. Acad. Sci. (Wash.) 60, 300–304 (1968).PubMedGoogle Scholar
  98. 98.
    Holley, R. W., Kiernan, J. A.: Growth control in cell cultures, p. 3–15. In: Symposium on Growth Control in Cell Cultures, ed. G. E. W. Wolstenholme, J. Knight. London: Churchill Livingstone 1971. 275 pp.Google Scholar
  99. 99.
    Horikawa, M., Fox, A. S.: Culture of embryonic cells of Drosophila melanogaster in vitro. Science 145, 1437–1439 (1964).PubMedGoogle Scholar
  100. 100.
    Horikawa, M., Ling, L.-N., Fox, A. S.: Long-term culture of embryonic cells of Drosophila melanogaster. Nature (Lond.) 210, 183–185 (1966).PubMedGoogle Scholar
  101. 101.
    Howard, I. K., Sage, H. J.: Isolation and characterization of a phytohemagglutinin from the lentil. Biochemistry 8, 2436–2441 (1969).PubMedGoogle Scholar
  102. 102.
    Hsie, A. W., Puck, T. T.: Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3′:5′-monophosphate and testosterone. Proc. nat. Acad. Sci. (Wash.) 68, 358–361 (1971).PubMedGoogle Scholar
  103. 103.
    Hughes, R. C., Sanford, B., Jeanloz, R. W.: Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase. Proc. nat. Acad. Sci. (Wash.) 69, 942–945 (1972).PubMedGoogle Scholar
  104. 104.
    Humphreys, S.: Abstract 133, presented at the 11th Annual Meeting of Amer. Soc. of Cell Biol. (1971).Google Scholar
  105. 105.
    Humphreys, T.: Chemical dissolution and in vitro reconstruction of sponge cell adhesions. I. Isolation and functional demonstration of the components involved. Develop. Biol. 8, 27–47 (1963).Google Scholar
  106. 106.
    Humphreys, T.: Aggregation of chemically dissociated sponge cells in the absence of protein synthesis. J. exp. Zool. 160, 235–240 (1965).PubMedGoogle Scholar
  107. 107.
    Humphreys, T.: Cell surface components participating in aggregation: evidence for a new cell particulate. Exp. Cell Res. 40, 539–543 (1965).PubMedGoogle Scholar
  108. 108.
    Humphreys, T.: The cell surface and specific cell aggregation, p. 195–210. In: The specificity of cell surfaces, ed. E. Davis, L. Warren. Englewood, N.Y.: Prentice Hall 1967.Google Scholar
  109. 109.
    Humphreys, T.: Biochemical analysis of sponge cell aggregation. Symp. Zool. Soc. Found. 25, 325–334 (1969).Google Scholar
  110. 110.
    Humphreys, T.: Species specific aggregation of dissociated sponge cells. Nature (Lond.) 228, 685–686 (1970).PubMedGoogle Scholar
  111. 111.
    Humphreys, T.: Cell contact, contact inhibition of growth and the regulation of macromolecular metabolism, p. 264–276. In: Cell interactions, 3rd Lepetit Colloquium, ed. S. G. Silvestri. 1971. 314 pp.Google Scholar
  112. 112.
    Humphreys, T., Humphreys, S., Moscona, A. A.: A procedure for obtaining completely dissociated sponge cells. Biol. Bull. 119, 294 (1960).Google Scholar
  113. 113.
    Humphreys, T., Humphreys, S., Moscona, A. A.: Rotation-mediated aggregation of dissociated sponge cells. Biol. Bull. 119, 295 (1960).Google Scholar
  114. 114.
    Hunt, R. K., Jacobson, M.: Developmental and stability of positional information in Xenopus retinal ganglion cells. Proc. nat. Acad. Sci. (Wash.) 69, 780–783 (1972).PubMedGoogle Scholar
  115. 115.
    Hunt, R. K., Jacobson, M.: Specification of positional information in retinal ganglion cells of Xenopus: stability of the specified state. Proc. nat. Acad. Sci. (Wash.) 69, 2860–2864 (1972).PubMedGoogle Scholar
  116. 116.
    Hynes, R. O., Greenhouse, G. A., Minkoff, R., Gross, P. R.: Properties of the three cell types in sixteen-cell sea urchin embryos: RNA synthesis. Develop. Biol. 27, 457–478 (1972).PubMedGoogle Scholar
  117. 117.
    Hynes, R. O., Raff, R. A., Gross, P. R.: Properties of the three cell types in sixteen-cell sea urchin embryos aggregation and microtubule protein synthesis. Develop. Biol. 27, 150–165 (1972).PubMedGoogle Scholar
  118. 118.
    Inbar, M., Rabinowitz, Z., Sachs, L.: The formation of variants with a reversion of properties of transformed cells. III. Reversion of the structure of the cell surface membrane. Int. J. Cancer 4, 690–696 (1969).PubMedGoogle Scholar
  119. 119.
    Inbar, M., Sachs, L.: Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc. nat. Acad. Sci. (Wash.) 63, 1418–1425 (1969).PubMedGoogle Scholar
  120. 120.
    Inbar, M., Sachs, L.: Structural differences in sites on the surface membrane of normal and transformed cells. Nature (Lond.) 233, 710–712 (1969).Google Scholar
  121. 121.
    Inbar, M., Vlodavsky, I., Sachs, L.: Availability of L-fucose-like sites on the surface membrane of normal and transformed mammalian cells. Biochim. biophys. Acta (Amst.) 255, 703–708 (1972).PubMedGoogle Scholar
  122. 122.
    Jacobson, M.: Developmental neurobiology. New York: Holt, Rinehart and Winston 1970.Google Scholar
  123. 123.
    Jansons, V. K., Burger, M. M.: Isolation and characterization of agglutinin receptor sites. II. Isolation and partial purification of surface membrane receptors for wheat germ agglutinin. Biochim. biophys. Acta (Amst.) (in press) (1972).Google Scholar
  124. 124.
    Johnson, G. S., Friedman, R. M., Pastan, I.: Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3′:5′-cyclic monophosphate and its derivatives. Proc. nat. Acad. Sci. (Wash.) 68, 425–429 (1971).PubMedGoogle Scholar
  125. 125.
    Kalb, A. J.: The separation of three L-fucose-binding proteins of Lotus tetragonolobus. Biochim. biophys. Acta (Amst.) 168, 532–536 (1968).PubMedGoogle Scholar
  126. 126.
    Kalckar, H. M.: Galactose metabolism and cell “sociology”. Science 150, 305–313 (1968).Google Scholar
  127. 127.
    Kay, H. E. M., Wallace, D. M.: A and B antigens of tumors arising from urinary epithelium. J. nat. Cancer Inst. 26, 1349–1365 (1961).PubMedGoogle Scholar
  128. 128.
    Kocher-Becker, U., Tiedemann, H.: Induction of mesodermal and endodermal structures and primordial germ cells in Triturus ectoderm by a vegetalizing factor from chick embryos. Nature (Lond.) 233, 65–66 (1971).PubMedGoogle Scholar
  129. 129.
    Kornfeld, S.: Decreased phytohemagglutinin receptor sites in chronic lymphocytic leukemia. Biochim. biophys. Acta (Amst.) 192, 542–545 (1971).Google Scholar
  130. 130.
    Kraemer, P. M.: Sialic acid of mammalian cell lines. J. Cell Physiol. 67, 23–34 (1966).PubMedGoogle Scholar
  131. 131.
    Kuhns, W. J., Burger, M. M.: (in preparation) 1972.Google Scholar
  132. 132.
    Lawrence, P. A.: The organization of the insect segment. Symp. Soc. exp. Biol. 25, 379–390 (1971).PubMedGoogle Scholar
  133. 133.
    Lawrence, P., Crick, F. H. C., Munro, M.: J. Cell Sci. (in press) (1972).Google Scholar
  134. 134.
    Lilien, J. E.: Enhancement of the aggregation of embryonic chick neural retina cells by a supernatant prepared from monolayers of homologous cells. Ph.D. Thesis, University of Chicago 1967.Google Scholar
  135. 135.
    Lilien, J. E.: Specific enhancement of cell aggregation in vitro. Develop. Biol. 17, 657–678 (1968).PubMedGoogle Scholar
  136. 136.
    Lilien, J. E.: Toward a molecular explanation for specific cell adhesion, p. 169–196. In: Current topics in developmental biology, ed. A. A. Moscona, A. Monroy. New York: Academic Press 1969. 233 pp.Google Scholar
  137. 137.
    Lilien, J. E., Moscona, A. A.: Cell aggregation: its enhancement by a supernatant from cultures of homologous cells. Science 157, 70–72 (1967).PubMedGoogle Scholar
  138. 138.
    Lin, J. Y., Tserno, K. Y., Chen, C. C., Lin, L. T., Tung, T. C.: Abrin and ricin: new anti-tumour substances. Nature (Lond.) 227, 292–293 (1970).PubMedGoogle Scholar
  139. 139.
    Ling, L-N. L., Horikawa, M., Fox, A. S.: Aggregation of dissociated cells from Drosophila embryos. Develop. Biol. 22, 264–281 (1970).PubMedGoogle Scholar
  140. 140.
    Lis, H., Sharon, N., Katchalski, E.: Soybean hemagglutinin, a plant glycoprotein. I. Isolation of a glycopeptide. J. biol. Chem. 241, 684–689 (1966).PubMedGoogle Scholar
  141. 141.
    MacLennan, A. P.: Polysaccharides from sponges and their possible significance in cellular aggregation. Symp. Zool. Soc. London 25, 299–324 (1969).Google Scholar
  142. 142.
    MacLennan, A. P., Dodd, R. Y.: Promoting activity of extracellular materials on sponge cell reaggregation. J. Embryol. exp. Morph. 17, 473–480 (1967).PubMedGoogle Scholar
  143. 143.
    Margoliash, E., Schenck, J. R., Hargie, M. P., Burokas, S., Richter, W. R., Barlow, G. H., Moscona, A. A.: Characterization of specific cell aggregating materials from sponge cell. Biochem. biophys. Res. Commun. 20, 383–388 (1965).Google Scholar
  144. 144.
    Martinez-Palomo, A., Wicker, R., Bernhard, W.: Ultrastructure detection of concanavalin surface receptors in normal and polyoma-transformed cells. Int. J. Cancer 9, 676–684 (1972).PubMedGoogle Scholar
  145. 145.
    Matsumoto, I., Osawa, T.: Purification and characterization of a Cytisus-type anti-H(O) phytohemagglutinin from Ulex europeus seeds. Arch. Biochem. Biophys. 140, 484–491 (1970).PubMedGoogle Scholar
  146. 146.
    McClay, D. R.: An autoradiographic analysis of the species specificity during sponge cell reaggregation. Biol. Bull. 141, 319–330 (1971).Google Scholar
  147. 147.
    Meezan, E., Wu, H. C., Black, P. H., Robbins, P. W.: Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed fibroblasts. Separation of glycoproteins and glycopeptides by Sephadex chromatography. Biochemistry 8, 2518–2524 (1969).PubMedGoogle Scholar
  148. 148.
    Metz, C.: Senior thesis, Princeton University 1972.Google Scholar
  149. 149.
    Metz, C., Monroy, A. (eds.): Fertilization. New York: Academic Press 1969.Google Scholar
  150. 150.
    Mitchison, N. A.: Control of the immune response by events at the lymphocyte surface. In Vitro 7, 88–94 (1971).PubMedGoogle Scholar
  151. 151.
    Mitchison, N. A.: Cell cooperation in the immune response. The hypothesis of an antigen presentation mechanism. Immunopathology 6, 52 (1971).Google Scholar
  152. 152.
    Mora, P. T., Brady, R. O., Bradley, R. M., McFarland, V. W.: Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines. Proc. nat. Acad. Sci. (Wash.) 63, 1290–1296 (1969).PubMedGoogle Scholar
  153. 153.
    Moscona, A. A.: Development of heterotypic combinations of dissociated embryonic chick cells. Proc. Soc. exp. Biol. (N.Y.) 92, 410–416 (1956).PubMedGoogle Scholar
  154. 154.
    Moscona, A. A.: The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc. nat. Acad. Sci. (Wash.) 43, 184–194 (1957).PubMedGoogle Scholar
  155. 155.
    Moscona, A. A.: Patterns and mechanisms of tissue reconstruction from dissociated cells, p. 45–70. In: Developing cell systems and their control, ed. D. Rudnick. New York: Ronald Press 1960.Google Scholar
  156. 156.
    Moscona, A. A.: Rotation-mediated histogenetic aggregation of dissociated cells: a quantifiable approach to cell interactions in vitro. Exp. Cell Res. 22, 455–475 (1961).PubMedGoogle Scholar
  157. 157.
    Moscona, A. A.: Analysis of cell recombinations in experimental synthesis of tissues in vitro. J. cell. comp. Physiol., Suppl. I 60, 65–80 (1962).Google Scholar
  158. 158.
    Moscona, A. A.: Cellular interactions in experimental histogenesis. Int. Rev. exp. Path. 1, 371–428 (1962).PubMedGoogle Scholar
  159. 159.
    Moscona, A. A.: Studies on cell aggregation: Demonstration of material with selective cell-binding activity. Proc. nat. Acad. Sci. (Wash.) 49, 742–747 (1963).PubMedGoogle Scholar
  160. 160.
    Moscona, A. A., Moscona, M. H.: The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. (Lond.) 86, 287–301 (1952).PubMedGoogle Scholar
  161. 161.
    Moscona, M. H., Moscona, A. A.: Control of differentiation in aggregates of embryonic skin cells: suppression of feather morphogenesis by cells from other tissues. Develop. Biol. 11, 402–423 (1965).PubMedGoogle Scholar
  162. 162.
    Nagata, Y., Burger, M. M.: Wheat germ agglutinin. Isolation and crystallization. J. biol. Chem. 247, 2248–2250 (1972).PubMedGoogle Scholar
  163. 163.
    Nagata, Y., Goldberg, A. R., Burger, M. M.: The isolation and purification of wheat germ agglutinin and other agglutinins. In: Methods in enzymology, ed. S. P. Colowick, N. O. Kaplan. New York: Academic Press (in press).Google Scholar
  164. 164.
    Neri, G., Walborg, E. F., Jr.: Concanavalin A and wheat germ agglutinin receptor activity of glycopeptides isolated from the surface of normal and neoplastic rat liver cells. Abstract No 35, 164th Amer. Chem. Soc. Meeting, Div. of Carbohydrate Chem. 1972.Google Scholar
  165. 165.
    Nicolson, G. L.: Difference in topology of normal and tumour cell membranes shown by different surface distribution of ferritin-conjugated concanavalin A. Nature (Lond.) New Biol. 233, 244–246 (1971).Google Scholar
  166. 166.
    Nicolson, G. L.: Topography of membrane concanavalin A sites modified by proteolysis. Nature (Lond.) New Biol. 239, 193–197 (1972).Google Scholar
  167. 167.
    Nicolson, G. L., Blaustein, J.: The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim. biophys. Acta (Amst.) 266, 543–547 (1972).PubMedGoogle Scholar
  168. 168.
    Noonan, K. D.: Ph.D. thesis, Princeton Univ. 1972.Google Scholar
  169. 169.
    Noonan, K. D., Burger, M. M.: Architectural changes of embryonic, normal and transformed cell surfaces demonstrated by plant agglutinins. Proc. 1st Conference and Workshops on Embryonic and Fetal Antigens in Cancer, p. 59–69, eds. N. G. Anderson, J. H. Coggin. 1971. 400 pp.Google Scholar
  170. 170.
    Nossal, G. J. V., Ada, G. F.: Antigens, lymphoid cells and the immune response. New York: Academic Press 1971. 324 pp.Google Scholar
  171. 171.
    Ohta, N., Pardee, A. B., McAuslon, B. R., Burger, M. M.: Sialic acid contents and controls of normal and malignant cells. Biochim. biophys. Acta (Amst.) 158, 98–102 (1968).PubMedGoogle Scholar
  172. 172.
    O’Neill, C. H.: An association between viral transformation and Forssman antigen detected by immune adherence in cultured BHK21 cells. J. Cell Sci. 3, 405–422 (1968).Google Scholar
  173. 173.
    Onodera, K., Sheinin, R.: Macromolecular glucosamine-containing component of the surface of cultivated mouse cells. J. Cell Sci. 7, 337–355 (1970).PubMedGoogle Scholar
  174. 174.
    Otten, J., Johnson, G. L., Paston, J.: Cyclic AMP levels in fibroblasts: relationship to growth rate and contact inhibition of growth. Biochem. biophys. Res. Commun. 44, 1192–1198 (1971).PubMedGoogle Scholar
  175. 175.
    Ozanne, B., Sambrook, J.: Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells. Nature (Lond.) New Biol. 232, 156–160 (1971).Google Scholar
  176. 176.
    Ozanne, B., Sambrook, J.: Isolation of lines of cells resistant to agglutination by concanavalin A from 3T3 cells transformed by SV 40. In: The biology of oncogenic viruses, 2nd Int. Lepetit Colloquium, ed. E. Verwey. Amsterdam: North-Holland Publ. 1971. 339 pp.Google Scholar
  177. 177.
    Paul, D., Leffert, H., Sato, G., Holley, R. W.: Stimulation of DNA and protein synthesis in fetal-rat liver cells by serum from partially hepatectomized rats. Proc. nat. Acad. Sci. (Wash.) 69, 374–377 (1972).PubMedGoogle Scholar
  178. 178.
    Ressac, B., Defendi, V.: Cell aggregation: Role of acid mucopolysaccharides. Science 175, 898–900 (1972).Google Scholar
  179. 179.
    Phillips, H. M., Steinberg, M. S.: Equilibrium measurements of embryonic chick cell adhesiveness. I. Shape equilibrium in centrifugal fields. Proc. nat. Acad. Sci. (Wash.) 64, 121–127 (1969).PubMedGoogle Scholar
  180. 180.
    Pollack, R. E., Burger, M. M.: Surface-specific characteristics of a contact inhibited cell line containing the SV40 viral genome. Proc. nat. Acad. Sci. (Wash.) 62, 1074–1076 (1969).PubMedGoogle Scholar
  181. 181.
    Raff, M. C., Petris, S. de: Antigen-antigen reaction at the lymphocyte surface: implications for membrane structure, lymphocyte activation and tolerance induction, p. 237–246. In: Cell Interactions, ed. S. G. Silvestri. Amsterdam: North-Holland Publ. Co. 1972. 314 pp.Google Scholar
  182. 182.
    Rapport, M. M., Graf, L., Skipski, V. P., Alonzo, N. F.: Immunochemical studies of organ and tumor lipids. VI. Isolation and properties of cytolipin H. Cancer (Philad.) 12, 438–445 (1959).PubMedGoogle Scholar
  183. 183.
    Renger, H. C., Basilico, C.: Mutation causing temperature-sensitive expression of cell transformation by a tumor virus. Proc. nat. Acad. Sci. (Wash.) 69, 109–114 (1972).PubMedGoogle Scholar
  184. 184.
    Robbins, P. W., Macpherson, J. A.: Glycolipid synthesis in normal and transformed animal cells. Proc. roy. Soc. B 177, 49–58 (1971).Google Scholar
  185. 185.
    Roseman, S.: The synthesis of complex carbohydrates by multiglycosyltransferases and their potential function in intercellular adhesion. Chem. Phys. Lipids 5, 270–297 (1970).PubMedGoogle Scholar
  186. 186.
    Roth, S. A.: Studies on intercellular adhesive selectivity. Develop. Biol. 18, 602–631 (1968).PubMedGoogle Scholar
  187. 187.
    Roth, S. A., Weston, J. A.: The measurement of intercellular adhesion. Proc. nat. Acad. Sci. (Wash.) 58, 974–980 (1967).PubMedGoogle Scholar
  188. 188.
    Roth, S. A., White, D.: Intercellular contacts and cell-surface galactosyl transferase activity. Proc. nat. Acad. Sci. (Wash.) 69, 485–489 (1972).PubMedGoogle Scholar
  189. 189.
    Rubin, H.: Growth regulation in cultures of chick embryo fibroblasts, p. 127–149. In: Growth control in cell cultures. A Ciba Foundation Symposium, ed. G. E. W. Wolstenholme, J. Knight. London: Churchill Livingston 1971.Google Scholar
  190. 190.
    Rubin, L., Saunders, J. W., Jr.: Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Develop. Biol. 28, 94–112 (1972).PubMedGoogle Scholar
  191. 191.
    Sachs, L.: The mechanism of carcinogenesis, p. 118–128. In: Molecular bioenergetics and macromolecular biochemistry, ed. H. H. Weber. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  192. 192.
    Sakiyama, H., Burge, B. W.: Comparative studies of the carbohydrate-containing components of 3T3 and simian virus 40 transformed 3T3 mouse fibroblasts. Biochemistry 11, 1366–1377 (1972).PubMedGoogle Scholar
  193. 193.
    Sakiyama, H., Gross, S. K., Robbins, P. W.: Glycolipid synthesis in normal and virus transformed hamster cell lines. Proc. nat. Acad. Sci. (Wash.) 69, 872–876 (1972).PubMedGoogle Scholar
  194. 194.
    Saxén, L.: Inductive interactions in kidney development. Symp. Soc. exp. Biol. 25, 207–222 (1971).PubMedGoogle Scholar
  195. 195.
    Saxén, L., Kohonen, J.: Inductive tissue interactions in vertebrate morphogenesis. Int. Rev. exp. Path. 8, 57–128 (1969).PubMedGoogle Scholar
  196. 196.
    Schnebli, H. P.: A protease-like activity associated with malignant cells. Schweiz. med. Wschr. 102, 1194–1197 (1972).PubMedGoogle Scholar
  197. 197.
    Schnebli, H. P., Burger, M. M.: Selective inhibition of growth of transformed cells by protease inhibitors. Proc. nat. Acad. Sci. (Wash.) (in press) (1972).Google Scholar
  198. 198.
    Schütz, L., Mora, P. T.: The need for direct cell contact in “contact” inhibition of cell division in culture. J. cell. Physiol. 71, 1–6 (1968).PubMedGoogle Scholar
  199. 199.
    Sconzo, G., Pirrone, A. M., Mutolo, V., Guidice, G.: Synthesis of ribosomal RNA in disaggregated cells of sea urchin embryos. Biochim. biophys. Acta (Amst.) 199, 441–446 (1970).PubMedGoogle Scholar
  200. 200.
    Seeds, N. W., Vatter, A. E.: Synaptogenesis in reaggregating brain cell culture. Proc. nat. Acad. Sci. (Wash.) 68, 3219–3222 (1971).PubMedGoogle Scholar
  201. 201.
    Sefton, B. M., Rubin, H.: Release from density dependent growth inhibition by proteolytic enzymes. Nature (Lond.) 227, 843–845 (1970).PubMedGoogle Scholar
  202. 202.
    Sheffield, J. B.: Studies on aggregation of embryonic cells: initial cell adhesions and the formation of intercellular junctions. J. Morph. 132, 245–264 (1970).PubMedGoogle Scholar
  203. 203.
    Sheffield, J. B., Moscona, A. A.: Early stages in the reaggregation of embryonic chick neural retina cells. Exp. Cell Res. 57, 462–466 (1969).PubMedGoogle Scholar
  204. 204.
    Sheinin, R., Onodera, K.: Studies on the biochemical properties of surface components of normal and SV-40 transformed 3T3 mouse cells. Canad. J. Biochem. 48, 851–857 (1970).Google Scholar
  205. 205.
    Sela, B., Lis, H., Sharon, N., Sachs, L.: Different locations of carbohydrate-containing sites in the surface membrane of normal and transformed cells. J. Membrane Biol. 3, 267–279 (1970).Google Scholar
  206. 206.
    Sheppard, J. R.: Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3′:5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 68, 1316–1320 (1971).PubMedGoogle Scholar
  207. 207.
    Sheppard, J. R.: Difference in the cyclic adenosine 3′,5′-monophosphate levels in normal and transformed cells. Nature (Lond.) New Biol. 236, 14–16 (1972).Google Scholar
  208. 208.
    Shimada, Y., Kano, M.: Formation of neuromuscular junctions in embryonic cultures. Arch. Histol. Japan 33, 95–114 (1971).Google Scholar
  209. 209.
    Shodell, M., Rubin, H., Gerhart, J.: Naturalization of growth-inhibitory material present in calf serum by conditioning factors elaborated by chick embryo cells in culture. Exp. Cell Res. 74, 375–382 (1972).PubMedGoogle Scholar
  210. 210.
    Shoham, J., Sachs, L.: Differences in the binding fluorescent concanavalin A to the surface membrane of normal and transformed cells. Proc. nat. Acad. Sci. (Wash.) 69, 2479–2482 (1972).PubMedGoogle Scholar
  211. 211.
    Sidman, R. L.: Abnormal cell migrations in developing brains of mutant mice, p. 40–49. In: Expanding concepts in mental retardation. A Symposium from the Joseph P. Kennedy, Jr. Foundation, ed. G. A. Jervis. Springfield, Ill.: Ch. C. Thomas 1968.Google Scholar
  212. 212.
    Sidman, R. L.: Development of interneuronal connections in brains of mutant mice, p. 163–193. In: Physiological and biochemical aspects of nervous integration, ed. I. D. Carlson. Englewood Cliffs, N.J.: Prentice Hall 1968.Google Scholar
  213. 213.
    Sidman, R. L.: Cell interactions in developing mammalian nervous system, p. 1–13. In: Cell interactions, 3rd Lepetit Colloquium, ed. L. G. Silvestri 1971. 314 pp.Google Scholar
  214. 214.
    Sperry, R. W.: Embryogenesis of behavioral nerve nets, p. 161–186. In: Organogenesis, ed. R. L. DeHaan, H. Ursprung. New York: Holt, Rinehart and Winston 1965.Google Scholar
  215. 215.
    Spiegel, M.: The role of specific surface antigens in cell adhesion. I. The reaggregation of sponge cells. Biol. Bull. 107, 130–143 (1954).Google Scholar
  216. 216.
    Steinberg, M. S.: Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. exp. Zool. 173, 395–434 (1970).PubMedGoogle Scholar
  217. 217.
    Steinberg, M. S., Leith, A.: Biol. Bull. (in press) (1972).Google Scholar
  218. 218.
    Stoker, M. G. P.: Surface changes and growth of virus transformed cells, p. 271–282. In: Biomembranes, vol. 2, ed. L. A. Manson. New York: Plenum Press 1971. 302 pp.Google Scholar
  219. 219.
    Stoker, M. G. P.: Tumour viruses and the sociology of fibroblasts. Proc. roy. Soc. 181, 1–17 (1972).Google Scholar
  220. 220.
    Stoker, M. G. P., Rubin, H.: Density dependent inhibition of cell growth in culture. Nature (Lond.) 215, 171–172 (1967).PubMedGoogle Scholar
  221. 221.
    Straznicky, K., Gaze, R. M.: The development of the tectum in Xenopus laevis: an autoradiographic study. J. Embryol. exp. Morph. 28, 87–115 (1972).PubMedGoogle Scholar
  222. 222.
    Tal, C.: The nature of the cell membrane receptor for the agglutination factor present in the sera of tumor patients and pregnant women. Proc. nat. Acad. Sci. (Wash.) 54, 1318–1321 (1965).PubMedGoogle Scholar
  223. 223.
    Tiedemann, H.: Factors determining embryonic differentiation. J. Cell Physiol. (Suppl. I) 72, 129–144 (1968).PubMedGoogle Scholar
  224. 224.
    Townes, P. S., Holtfreter, J.: Directed movements and selective adhesion of embryonic amphibian cells. J. exp. Zool. 128, 53–120 (1955).Google Scholar
  225. 225.
    Turner, R. S., Weinbaum, G., Burger, M. M.: (In preparation) 1972.Google Scholar
  226. 226.
    Uhlenbruck, G., Gielen, W., Pardee, G. J.: On the specificity of lectins with a broad agglutination spectrum. V. Further investigations on the tumor-characteristic agglutinin from wheat-germ lipase. Z. Krebsforsch. 74, 171–178 (1970).PubMedGoogle Scholar
  227. 227.
    Vasiliev, J. M., Gelfand, I. M., Guelstein, V. I., Fetisova, E. K.: Stimulation of DNA synthesis in cultures of mouse embryo fibroblast-like cells. J. Cell Physiol. 75, 305–314 (1970).PubMedGoogle Scholar
  228. 228.
    Vasiliev, J. M., Gelfand, I. M., Guelstein, V. I.: Inhibition of DNA synthesis in cell cultures by colcemid. Proc. nat. Acad. Sci. (Wash.) 68, 977–979 (1971).PubMedGoogle Scholar
  229. 229.
    Vicker, M. G., Edwards, J. G.: The effect of neuraminidase on the aggregation of BHK21 cells and BHK21 cells transformed by polyoma virus. J. Cell Sci. 10, 759–768 (1972).PubMedGoogle Scholar
  230. 230.
    Vlodavsky, I., Inbar, M., Sachs, L.: Temperature-sensitive agglutinability of human erythrocytes by lectins. Biochim. biophys. Acta (Amst.) 274, 364–369 (1972).PubMedGoogle Scholar
  231. 231.
    Wallach, D. J. H.: Generalized membrane defects in cancer. New Engl. J. Med. 280, 761–767 (1969).PubMedGoogle Scholar
  232. 232.
    Warren, L.: The biological significance of turnover of the surface membrane of animal cells, p. 197–222. In: Current topics in developmental biology, vol. 4, ed. A. A. Moscona, A. Monroy. New York: Academic Press 1969. 233 pp.Google Scholar
  233. 233.
    Warren, L., Critchley, D., Macpherson, I. A.: Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus. Nature (Lond.) 235, 275–278 (1972).PubMedGoogle Scholar
  234. 234.
    Warren, L., Fuhrer, J. P., Buck, C. A.: Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and a growth-dependent sialyltransferase. Proc. nat. Acad. Sci. (Wash.) 69, 1838–1842 (1972).PubMedGoogle Scholar
  235. 235.
    Warren, L., Glick, M. C.: Membranes of animal cells. II. The metabolism and turnover of the surface membrane. J. Cell Biol. 37, 729–745 (1968).PubMedGoogle Scholar
  236. 236.
    Weinbaum, G., Burger, M. M.: Sponge aggregation. III. Isolation of a surface component required in addition to the aggregation factor. Biol. Bull. 141, 406 (1971).Google Scholar
  237. 237.
    Weinbaum, G., Burger, M. M.: (In preparation) 1972.Google Scholar
  238. 238.
    Weiss, L.: The cell periphery, metastasis and other contact phenomena. Amsterdam: North-Holland Publ. 1967.Google Scholar
  239. 239.
    Weiss, P. A.: Cell contact. Int. Rev. Cytol. 7, 391–423 (1958).Google Scholar
  240. 240.
    Weiss, P. A.: Neural development in biological perspective, p. 53–61. In: The neurosciences: Second study program, editor-in-chief F. O. Schmitt. New York: Rockefeller Univ. Press. 1970. 1068 pp.Google Scholar
  241. 241.
    Weiss, P. A.: Neuronal dynamics and axonal flow. V. The semisolid state of the moving axonal column. Proc. nat. Acad. Sci. (Wash.) 69, 620–623 (1972).PubMedGoogle Scholar
  242. 242.
    Weiss, P. A.: Neuronal dynamics and axonal flow: axonal peristalsis. Proc. nat. Acad. Sci. (Wash.) 69, 1309–1312 (1972).PubMedGoogle Scholar
  243. 243.
    Weston, J. A.: Proc. nat. Acad. Sci. (Wash.) (in press) (1972).Google Scholar
  244. 244.
    Wilson, H. V.: On some phenomena of coalescence and regeneration in sponges. J. exp. Zool. 5, 245–258 (1907).Google Scholar
  245. 245.
    Wilson, H. V.: Development of sponges from dissociated tissue cells. Bull. Bur. Fisheries 30, 1–30 (1910).Google Scholar
  246. 246.
    Wiseman, L. S., Steinberg, M. L., Phillips, H. M.: Experimental modulation of intercellular cohesiveness: Reversal of tissue assembly patterns. Develop. Biol. 28, 498–517 (1972).PubMedGoogle Scholar
  247. 247.
    Wolpert, L.: Positional information and spatial pattern of cellular differentiation. J. theor. Biol. 25, 1–47 (1969).PubMedGoogle Scholar
  248. 248.
    Wolpert, L., Hicklin, J., Hornbruck, A.: Positional information and pattern regulation in regeneration of hydra. Symp. Soc. exp. Biol. 25, 391–416 (1971).PubMedGoogle Scholar
  249. 249.
    Wolpert, L., Clarke, M. R. B., Hornbusch, A.: Positional signalling along hydra. Nature (Lond.) New Biol. 239, 101–105 (1972).Google Scholar
  250. 250.
    Wray, V. P., Walborg, E. F., Jr.: Isolation of tumor cell surface binding sites for concanavalin A and wheat germ agglutinin. Cancer Res. 31, 2072–2079 (1971).PubMedGoogle Scholar
  251. 251.
    Wu, H. C., Meezan, E., Black, P. H., Robbins, P. W.: Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine-labeling patterns in 3T3, spontaneously transformed 3T3, and SV40-transformed 3T3 cells. Biochemistry 8, 2509–2517 (1969).PubMedGoogle Scholar
  252. 252.
    Zwilling, E.: Limb morphogenesis. Develop. Biol. 28, 12–17 (1972).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. S. Turner
  • M. M. Burger
    • 1
  1. 1.Department of BiochemistryBiocenter of the University of BaselBasel

Personalised recommendations