Advertisement

Stereospecific polymerization of aldehydes and epoxides

Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 11)

Keywords

Catalyst System Propylene Oxide Crystalline Polymer Aluminum Atom Aliphatic Aldehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

Review Articles

  1. 1.
    Bevington, J. C.: Polymers from aldehydes and other carbonyl compounds. In: Gaylord, N. G. (Ed.): Polyethers. New York: Wiley (Interscience) 1962.Google Scholar
  2. 2.
    Furukawa, J., Saegusa, T.: Polymerization of aldehydes and oxides. New York: Interscience 1963.Google Scholar
  3. 3.
    Pregaglia, G. F., Binaghi, M.: Ionic polymerization of aldehydes, ketones, and ketenes. In: Ketley, A. D. (Ed.): The Stereochemistry of Macromolecules, Vol. 2. New York: Marcel Dekker 1967.Google Scholar
  4. 4.
    Vogl, O.: Polymerization of aliphatic aldehydes. J. Macromol. Sci. A 1, 243 (1967).Google Scholar
  5. 5.
    Gurgiolo, A. E.: Poly(alkylene oxide). Rev. Macromol. Chem. 1, 39 (1966).Google Scholar
  6. 6.
    Tsuruta, T.: Stereospecific polymerization of epoxides. In: Ketley, A. D. (Ed.): The Chemistry of Macromolecules, Vol. 2. New York: Marcel Dekker 1967.Google Scholar
  7. 7.
    Ishii, Y., Sakai, S.: 1,2-epoxides. In: Frisch, K.C., Reegen, S. L. (Eds.): Ring opening polymerization. New York-London: Marcel Dekker 1969.Google Scholar

Original Papers

  1. 1.
    Natta, G.: Polymères isotactiques. Makromol. Chem. 16, 213 (1955).Google Scholar
  2. 2.
    — Une nouvelle classe de polymères d'α-olefines ayant une régularité de structure exceptionnelle. J. Polymer Sci. 16, 143 (1955).Google Scholar
  3. 3.
    — Pino, P., Corradini, P., Danusso, F., Mantica, E., Mazzanti, G., Moraglio, G.: Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 77, 1709 (1955).Google Scholar
  4. 4.
    Pruitt, M.E., Baggett, J.M.: Catalysts for the polymerization of olefin oxide. U.S.P. 2,706,181 (Apr. 12, 1955).Google Scholar
  5. 5.
    Pruitt, M. E., Baggett, J. M.: Solid polymers of propylene oxide. U.S.P. 2, 706, 189 (Apr. 12, 1955).Google Scholar
  6. 6.
    Price, C. C., Osgan, M., Hughes, R. E., Shambelan, C.: The polymerization of l-propylene oxide. J. Am. Chem. Soc. 78, 690 (1956).Google Scholar
  7. 7.
    — — The polymerization of l-propylene oxide. J. Am. Chem. Soc. 78, 4787 (1956).Google Scholar
  8. 8.
    Tani, H.: Stereospecific polymerization of acetaldehyde and propylene oxide. Kogyo Kagaku Zasshi 70, 1895 (1967).Google Scholar
  9. 9.
    Travers, M. W.: On two new polymers of acetaldehyde. Trans. Faraday Soc. 32, 246 (1936).Google Scholar
  10. 10.
    Letort, M.: Sur un nouveau polymère de l'acétaldéhyde. Compt. Rend. 202, 767 (1936).Google Scholar
  11. 11.
    Staudinger, H.: (General discussion). Trans. Faraday Soc. 32, 249 (1936).Google Scholar
  12. 12.
    Letort, M., Petry, J.: Relations entre les conditions de crystallisation de l'acétaldéhyde et sa polymérisation. Compt. Rend. 231, 545 (1950).Google Scholar
  13. 13.
    — — Initiation de la polymérisation de l'acétaldéhyde en polyacétaldéhyde. Compt. Rend. 231, 519 (1950).Google Scholar
  14. 14.
    — Mathis, P.: Effect co-catalytique des traces d'eau dans la formation du polyacétaldéhyde. Compt. Rend. 241, 651 (1955).Google Scholar
  15. 15.
    — — Extreme d'un rapport stoechiométrique simple entre initiateur et cocatalyseur dans leur efficacité à former le polyacétaldéhyde. Compt. Rend. 242, 371 (1956).Google Scholar
  16. 16.
    — — Formation du polyacétaldéhyde directement à partir du monomère liquide. Compt. Rend. 249, 274 (1959).Google Scholar
  17. 17.
    Natta, G., Mazzanti, G., Corradini, P., Bassi, I. W.: Isotactic aldehyde polymers. Makromol. Chem. 37, 156 (1960).Google Scholar
  18. 18.
    Furukawa, J., Saegusa, T., Fujii, H., Kawasaki, A., Imai, H., Fujii, Y.: Crystalline polyaldehydes. Makromol. Chem. 37, 149 (1960).Google Scholar
  19. 19.
    Vogl, O.: The polymerization of aldehydes. J. Polymer Sci. 46, 261 (1960).Google Scholar
  20. 20.
    Furukawa, J., Saegusa, T., Fujii, H.: Preparation of crystalline polyaldehydes. Makromol. Chem. 44–46, 398 (1961).Google Scholar
  21. 21.
    Yasuda, H., Fujita, K., Yamamoto, S., Tani, H.: Stereospecific polymerization of acetaldehyde by diethylaluminum butoxides. J. Polymer Sci. A-1 to be published.Google Scholar
  22. 22.
    Fujii, H., Tsukuma, I., Saegusa, T., Furukawa, J.: Initiation mechanism of acetaldehyde polymerization by alkyl aluminum catalyst. Makromol. Chem. 82, 32 (1965).Google Scholar
  23. 23.
    Furukawa, J., Saegusa, T., Fujii, H.: Mechanism of stereoregular polymerization of acetaldehyde. J. Polymer Sci. C 4, 281 (1964).Google Scholar
  24. 24.
    Natta, G., Mazzanti, G., Corradini, P., Chini, P., Bassi, I. W.: Linear isotactic polymers from aliphatic aldehydes. I. Polyacetaldehyde. II. Polymers of higher aliphatic aldehydes. Atti Accad. Nazl. Lincei, Classe Sci. Fis. Mat. Nat. 28, 18 (1960).Google Scholar
  25. 25.
    Vogl, O., Bryant, W. M. D.: Polymerization of higher aldehydes. VI. Mechanism of aldehyde polymerization. J. Polymer Sci. A 2, 4633 (1964).Google Scholar
  26. 26.
    Tani, H., Aoyagi, T., Araki, T.: Polymerization of acetaldehyde using AlEt3-alkali metal hydroxide systems. J. Polymer Sci. B 2, 921 (1964).Google Scholar
  27. 27.
    — Oguni, N.: Stereospecific polymerization of acetaldehyde using R2Al-NR″-AlR2 and Li+[R3Al-NR'-AlR2] as catalysts. J. Polymer Sci. B 3, 123 (1965).Google Scholar
  28. 28.
    — Araki, T., Oguni, N., Aoyagi, T.: A new series of organoaluminum complexes and their use as highly stereospecific catalysts for the polymerization of acetaldehyde. J. Polymer Sci. B 4, 97 (1966).Google Scholar
  29. 29.
    Aoyagi, T., Araki, T., Oguni, N., Mikumo, M., Tani, H.: Syntheses of Binuclear Organoaluminum compounds containing oxygen, nitrogen and sulfur atoms. Inorg. Chem. to be published.Google Scholar
  30. 30.
    — — — Tani, H.: Proton magnetic resonance studies on pentaalkyl dialuminum metal oxides and related complexes. Inorg. Chem. in press.Google Scholar
  31. 31.
    Araki, T., Hayakawa, K., Aoyagi, T., Nakano, Y., Tani, H.: Reaction of acetaldehyde with mono-and binuclear organoaluminum compounds at low temperature. J. Org. Chem. in press.Google Scholar
  32. 32.
    Aoyagi, T., Araki, T., Tani, H.: Organoaluminum catalysts for polymerization reaction. Synthesis of isotactic polyacetaldehyde by AlR3-alkai metal hydroxide catalysts in situ. J. Polymer Sci. A-1, 10, 2325 (1972).Google Scholar
  33. 33.
    — — Mikumo, M., Nakano, Y., Tachibana, S., Miyake, H., Tani, H.: Catalyst behavior of isolated donor-acceptor type AlR3 complexes for stereospecific polymerization of acetaldehyde (in preparation).Google Scholar
  34. 34.
    Lee, K., Yamashita, S., Araki, T., Tani, H.: Stereospecific polymerization of acetaldehyde by phosphorous-containing organoaluminums (in preparation).Google Scholar
  35. 35.
    Tani, H., Yasuda, H., Araki, T.: Stereospecific polymerization of acetaldehyde with catalyst systems: AlEt3-ketone-H2O and AlEt3-amide-(H2O). J. Polymer Sci. B 2, 933 (1964).Google Scholar
  36. 36.
    — Araki, T., Yasuda, H.: The isolation and polymerization activities of the reaction products between trialkylaluminum and acid amide. J. Polymer Sci. B 4, 727 (1966).Google Scholar
  37. 37.
    — — — Aldehyde complexes of organoaluminum compound: preparation and their significance for polymerization of some aldehydes. J. Polymer Sci. B 6, 389 (1968).Google Scholar
  38. 38.
    — Yasuda, H.: Stereospecific polymerization of acetaldehyde by R2AlOCR'NPh: active species and essential role of cocatalyst. J. Polymer Sci. B 7, 17 (1969).Google Scholar
  39. 39.
    Yasuda, H., Araki, T., Tani, H.: Structure and chemical behavior of an organoaluminum [R2AlOCR'NPh]2. A stereospecific catalyst for polymerization of acetaldehyde. J. Organomatal. Chem. in press.Google Scholar
  40. 40.
    Jennings, J. R., Wade, K., Wyatt, B. K.: Reactions between organoaluminum compounds and N-substituted acid amides. J. Chem. Soc. A. 1968, 2535.Google Scholar
  41. 41.
    Yasuda, H., Araki, T., Tani, H.: Monomer-catalyst complex in the stereospecific polymerization of aliphatic aldehyde. The structure and chemical behavior of the aldehyde complex of [R2AlOCR'NPh]2. J. Organometal. Chem. in press.Google Scholar
  42. 42.
    — Tani, H.: Stereospecific polymerization of aliphatic monoaldehyde. Macromolecules, in press.Google Scholar
  43. 43.
    — — Stereospecific polymerization of o-phthalaldehyde, in press.Google Scholar
  44. 44.
    Kai, Y., Yasuoka, N., Kasai, N., Kakudo, M., Yasuda, H., Tani, H.: Molecular structure of the polymerization catalyst. Dimeric dimethylaminum oxybenzylideneaniline [Me2AlOCPhNPh]2. Chem. Commun. 1968, 1332.Google Scholar
  45. 45.
    — — — — — — X-ray determination of the molecular structure of an organoaluminum compound [Me2AlOCPhNPh·ONMe2]. Chem. Commun. 1971, 940.Google Scholar
  46. 46.
    — — — — — — Molecular structure of the polymerization catalyst. Monomer complex [Me2AlOCPhNPh·MeCHO]2. Chem. Commun. 1969, 575.Google Scholar
  47. 47.
    — — — — — — The crystal and molecular structure of the catalytically active organoaluminum compound [Me2AlOCPhNPh·MeCHO·AlMe3]. Chem. Commun. 1970, 1243.Google Scholar
  48. 48.
    Olah, G.A., Sommer, J., Namauworth, E.: Stable carbonium ions. XLII. Protonated aliphatic aldehydes. J. Am. Chem. Soc. 89, 3582 (1967).Google Scholar
  49. 49.
    Brame, E.G., Jr., Vogl, O.: NMR studies of polyacetaldehydes. J. Macromol. Chem. A 1, 277 (1967).Google Scholar
  50. 50.
    Aso, C.: Cyclopolymerization of bifunctional monomers. Pure Appl. Chem. 23, 287 (1970).Google Scholar
  51. 51.
    — Tagami, S.: Cyclopolymerization of o-phthalaldehyde. J. Polymer Sci. B-5, 217 (1967).Google Scholar
  52. 52.
    — Kunitake, T.: Polymerization of aromatic aldehyde. II. Cationic copolymerization of phthalaldehyde. J. Polymer Sci. A 1, 7, 497 (1969).Google Scholar
  53. 53.
    — Polymerization of aromatic aldehydes. III. The cyclopolymerization of phthalaldehyde and the structure of the polymer. Macromolecules 2, 414 (1969).Google Scholar
  54. 54.
    Vandenberg, E.J.: Crystalline polymers of the 2,3-epoxybutanes. Structure and mechanism aspects. J. Am. Chem. Soc. 83, 3538 (1961).Google Scholar
  55. 55.
    — Some mechanism aspects of epoxide polymerization. Stereochemical structure of the crystalline polyethers from the 2,3-epoxybutanes. J. Polymer Sci. B 2, 1085 (1964).Google Scholar
  56. 56.
    — Epoxide polymers. Synthesis, stereochemistry, structure, and mechanism. J. Polymer Sci. A 1, 7, 525 (1969).Google Scholar
  57. 57.
    Price, C.C., Spector, R.: Partial head-to-head polymerization of propylene oxide by stereospecific catalysts. J. Am. Chem. Soc. 87, 2069 (1965).Google Scholar
  58. 58.
    Ochi, H., Yokoyama, M., Tadokoro, H., Price, C.C.: Infrared evidence for inversion ring-opening of ethylene oxide polymerization. Macromolecules, to be published.Google Scholar
  59. 59.
    Tani, H., Araki, T., Oguni, N., Ueyama, N.: Crystalline catalysts containing Al-O-Al or Zn-N-Zn group for stereospecific polymerization of propylene oxide. J. Am. Chem. Soc. 89, 173 (1967).Google Scholar
  60. 60.
    Vandenberg, E.J.: Organometallic catalysts for polymerizing monosubstituted epoxides. J. Polymer Sci. 47, 486 (1960).Google Scholar
  61. 61.
    Tani, H., Oguni, N., Watanabe, S.: Nuclear magnetic resonance studies on poly(propylene oxide-2-d). J. Polymer Sci. B 6, 577 (1968).Google Scholar
  62. 62.
    Oguni, N., Watanabe, S., Maki, M., Tani, H.: Structure analysis of polypropylene oxide-α-d by proton nuclear magnetic resonance spectroscopy Macromolecules, in press.Google Scholar
  63. 63.
    Tani, H., Oguni, N.: Nuclear magnetic resonance studies on poly(t-butyl-ethylene oxide-2-d). J. Polymer Sci. B 7, 803 (1969).Google Scholar
  64. 64.
    Oguni, N., Komoda, T., Nomura, M., Tani, H.: Studies on microstructure of polystyrene oxide and its α-deuterated derivatives with high resolution nuclear magnetic resonance spectroscopy (in preparation).Google Scholar
  65. 65.
    — Maeda, S., Tani, H.: Structure analysis of polypropylene oxide-β-d1 by proton nuclear magnetic resonance spectroscopy. Macromolecules, to be published.Google Scholar
  66. 66.
    Stewart, D.G., Wadden, D.Y., Borrow, E.T.: Alkylene oxide polymers. U.S.P. 2,870,100 (Jan. 20, 1959).Google Scholar
  67. 67.
    Kambara, S., Hatano, M.: The polymerization of propylene oxide by triethylaluminum. J. Polymer Sci. 27, 584 (1958).Google Scholar
  68. 68.
    Ebert, P.E., Price, C.C.: Polyethers. VI. Aluminum alkyls as catalysts for polymerization of propylene oxide. J. Polymer Sci. 34, 157 (1959).Google Scholar
  69. 69.
    Colclough, O., Gee, G., Jagger, A.H.: The polymerization of propylene oxide by trimethyl aluminum. J. Polymer Sci. 48, 273 (1960).Google Scholar
  70. 70.
    Colclough, O., Gee, G., Higginson, W.C.E., Jackson, J.B., Litt, M.: The polymerization of epoxides by metal halide catalysts. J. Polymer Sci. 34, 171 (1959).Google Scholar
  71. 71.
    Ueshima, T., Fujii, T., Saegusa, T., Furukawa, J.: The initiation mechanism of polymerization by the system AlEt3/H2O. Makromol. Chem. 98, 58 (1966).Google Scholar
  72. 72.
    Imai, H., Saegusa, T., Furukawa, J.: Acid strength of organometallic compounds and catalytic activity of cationic polymerization. Makromol. Chem. 81, 92 (1965).Google Scholar
  73. 73.
    Colclough, R.O., Wilkinson, K.: J. Polymer Sci. C 4, 311 (1964).Google Scholar
  74. 74.
    Ueyama, N., Araki, T., Aoyagi, T., Tani, H.: Organoaluminum compound containing Al-O-Al bond in relating to the polymerization catalyst. I. Synthesis of bis(dialkylaluminum)oxide (in preparation).Google Scholar
  75. 75.
    — — Tani, H.: Organoaluminum compound containing Al-O-Al bond in relating to the polymerization catalyst. II. Catalytic activity of R2AlOAlR2 and its derivative for stereospecific polymerization of alkylene oxide (in preparation).Google Scholar
  76. 76.
    — — — Organoaluminum compound containing Al-O-Al bond in relating to the polymerization catalyst. III. Distributing factors for stereoregular polymerization of propylene oxide (in preparation).Google Scholar
  77. 77.
    Sakharovskava, G.B., Korneev, N.N., Popov, A.F., Larikov, E.I., Zhigach, A.F.: Reaction of aluminumtrialkyls with water. Zh. Obshch. Khim. 34 (10), 3435 (1964).Google Scholar
  78. 78.
    Kern, R.J.: The polymerization of styrene oxide. Makromol. Chem. 81, 261 (1965).Google Scholar
  79. 79.
    Bailey, F.E., Jr., France, H.G.: Rates of polymerization and relative copolymerization rates of some epoxides in the formation of linear polyethers. J. Polymer Sci. 45, 243 (1960).Google Scholar
  80. 80.
    Tsuruta, T., Inoue, S., Tsubaki, K.: Polymerization of styrene oxide and butadiene monoxide by organozinc compounds. Makromol. Chem. 111, 236 (1968).Google Scholar
  81. 81.
    Herold, R.J., Aggarwal, S.L., Neff, V.: Mechanisms of the reactions of diethylzinc with isopropanol and water. Can. J. Chem. 41, 1368 (1963).Google Scholar
  82. 82.
    Burgass, A.J., Colclough, R.O.: Stereospecific polymerization of epoxides. Soc. Chem. Ind. Monogr. 20, 41 (1966).Google Scholar
  83. 83.
    Ishimori, M., Nakasugi, O., Takeda, N., Tsuruta, T.: Studies on organometallic compounds as polymerization catalysts. II. Diethylzinc/water system for epoxide polymerization. Makromol. Chem. 115, 103 (1968).Google Scholar
  84. 84.
    Nakaniwa, N., Ozaki, K., Furukawa, J.: Study of diethylzinc/water catalyst system. Makromol. Chem. 138, 197 (1970).Google Scholar
  85. 85.
    Ishimori, M., Tsuruta, T.: Infrared studies on organometallic compounds as polymerization catalysts. I. Diethylzinc-alcohol system for epoxide polymerization. Makromol. Chem. 64, 190 (1963).Google Scholar
  86. 86.
    — Tomoshige, T., Tsuruta, T.: Studies on organometallic compounds as polymerization catalysts. III. Catalyst activity and structure of zinc alkoxide for propylene oxide polymerization. Makromol. Chem. 120, 161 (1968).Google Scholar
  87. 87.
    Inoue, S., Tsukuma, I., Kawaguchi, M., Tsuruta, T.: Synthesis of optically active polymers by asymmetric catalysts. VI. Behavior of organozinc catalyst systems in the stereoselective polymerization of propylene oxide. Makromol. Chem. 103, 151 (1967).Google Scholar
  88. 88.
    Oguni, N., Tani, H.: Nitrogen-containing organozinc and organoaluminum as catalyst for stereospecific polymerization of propylene oxide (in preparation).Google Scholar
  89. 89.
    Tani, H., Oguni, N.: Stereospecific polymerization of propylene oxide by N,N-bis(ethylzinc)-t-butylamine: electron donor complex of catalyst and its implication for polymerization mechanism. J. Polymer Sci. B 7, 769 (1969).Google Scholar
  90. 90.
    Oguni, N., Fujita, T., Tani, H.: Stereospecific polymerization of propylene oxide and its α-deuterated derivative by bis(ethylzinc) t-butylamine in the presence of water as a catalyst (in preparation).Google Scholar
  91. 91.
    Oguni, N., Lee, K., Tani, H.: Microstructure analysis of polypropylene oxide by 13C-nmr spectroscopy. Macromolecules, in press.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. Tani
    • 1
  1. 1.Department of Polymer Science, Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations