Advertisement

Mechanisms of bacterial resistance to antibiotics

  • J.-S. Pitton
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 65)

Keywords

Minimum Inhibitory Concentration Transfer Factor Bacterial Resistance Resistance Determinant Tetracycline Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiba, T.: Mechanism of development of resistance in Shigella. Proc. 15th Gen. Meeting of the Jap. Med. Assoc. 5, 299–305 (1959); quoted by Watanabe (1963).Google Scholar
  2. Akiba, T., Koyama, K., Ishiki, Y., Kimura, S., Fukushima, T.: On the mechanism of the development of multiple drug-resistant clones of Shigella. Jap. J. Microbiol. 4, 219–227 (1960).PubMedGoogle Scholar
  3. Akiba, T., Yokota, T.: Studies on the mechanism of transfer of drug-resistance in bacteria. 22. Influences of chloramphenicol and tetracycline on the 14C-amino acid incorporation by ribosomes isolated from the drug-sensitive strain and the multiple resistant strain of E. coli. Med. Biol. (Tokyo) 64, 34 (1962); quoted by Okamoto and Mizuno (1964).Google Scholar
  4. Anderson, E. S.: A rapid screening test for transfer factors in drug-sensitive Enterobacteriaceae. Nature (Lond.) 208, 1016–1017 (1965a).PubMedGoogle Scholar
  5. Anderson, E. S.: Origin of transferable drug-resistance factors in the Enterobacteriaceae. Brit. med. J. 1965b II, 1289–1291.Google Scholar
  6. Anderson, E. S.: Influence of the Δ transfer factor on the phage sensitivity of Salmonellae. Nature (Lond.) 212, 795–799 (1966).PubMedGoogle Scholar
  7. Anderson, E. S.: Facteurs de transfert et résistances aux antibiotiques chez les Entérobactéries. Ann. Inst. Pasteur 112, 547–563 (1967).Google Scholar
  8. Anderson, E. S.: The ecology of transferable drug resistance in the Enterobacteria. Ann. Rev. Microbiol. 22, 131–180 (1968).Google Scholar
  9. Anderson, E. S., Datta, N.: Resistance to penicillins and its transfer in Enterobacteriaceae. Lancet 1965 I, 407–409.Google Scholar
  10. Anderson, E. S., Kelemen, M. V., Jones, C. M., Pitton, J. S.: Study of the association of resistance to two drugs in a transferable determinant in Salmonella typhimurium. Genet. Res. 11, 119–124 (1968).PubMedGoogle Scholar
  11. Anderson, E. S., Lewis, M. J.: Drug resistance and its transfer in Salmonella typhimurium. Nature (Lond.) 206, 579–583 (1965a).PubMedGoogle Scholar
  12. Anderson, E. S., Lewis, M. J.: Characterization of a transfer factor associated with drug resistance in Salmonella typhimurium. Nature (Lond.) 208, 843–849 (1965b).PubMedGoogle Scholar
  13. Anderson, T. F., Wollman, E., Jacob, F.: Sur les processus de conjugaison et de recombinaison chez E. coli. III. Aspects morphologiques en microscopie électronique. Ann. Inst. Pasteur 93, 450–455 (1957).Google Scholar
  14. Anderson, W. F., Gorini, L., Breckenridge, L.: Role of ribosomes in streptomycin-activated suppression. Proc. nat. Acad. Sci. (Wash.) 54, 1076–1083 (1965).PubMedGoogle Scholar
  15. Apirion, D., Schlessinger, D.: The loss of phenotypic suppression in streptomycin-resistant mutants. Proc. nat. Acad. Sci. (Wash.) 58, 206–212 (1967a).PubMedGoogle Scholar
  16. Apirion, D., Schlessinger, D.: Reversion from streptomycin dependence in Escherichia coli by a further change in the ribosome. J. Bact. 94, 1275–1276 (1967b).PubMedGoogle Scholar
  17. Apirion, D., Schlessinger, D.: Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J. Bact. 96, 768–776 (1968).PubMedGoogle Scholar
  18. Apirion, D., Schlessinger, D., Phillips, S., Sypherd, P.: Escherichia coli: reversion from streptomycin dependence, a mutation in a specific 30S ribosomal protein. J. molec. Biol. 43, 327–329 (1969).PubMedGoogle Scholar
  19. Asheshov, E. H.: Chromosomal location of the genetic elements controlling penicillinase production in a strain of Staphylococcus aureus. Nature (Lond.) 210, 804–806 (1966a).PubMedGoogle Scholar
  20. Asheshov, E. H.: Loss of antibiotic resistance in Staphylococcus aureus resulting from growth at high temperature. J. gen. Microbiol. 42, 403–410 (1966b).PubMedGoogle Scholar
  21. Barber, M.: Drug resistance of Staphylococci with special reference to penicillinase production. In: Ciba Foundation Symposium on Drug Resistance in Micro-Organisms, p. 262–274. Ed. by G. E. Wolstenholme and C. M. O'Connor. London: J. & A. Churchill 1957.Google Scholar
  22. Barber, M.: Coagulase-positive Staphylococci resistant to benzylpenicillin, methicillin and other penicillins. In: Ciba Foundation Study Group No 13: Resistance of bacteria to the penicillins, p. 89–102. London: J. & A. Churchill 1962.Google Scholar
  23. Batchelor, F. R., Chain, E. B., Richards, M., Rolinson, G. N.: 6-aminopenicillanic acid. VI. Formation of 6-aminopenicillanic acid from penicillins by enzymic hydrolysis. Proc. roy. Soc. B 154, 522–531 (1961).Google Scholar
  24. Benbough, J., Morrison, G. A.: Bacteriostatic actions of some tetracyclines. J. Pharm. Pharmacol. 17, 409–422 (1965).PubMedGoogle Scholar
  25. Boman, H. G., Eriksson-Grennberg, K. G., Normark, S., Matsson, E.: Resistance of Escherichia coli to penicillins. IV. Genetic study of mutants resistant to D,L-ampicillin concentrations of 100 µg/ml. Genet. Res. 12, 169–185 (1968).PubMedGoogle Scholar
  26. Bouanchaud, D.: Recherche colorimétrique de l'estérification du chloramphénicol par les entérobactéries et les staphylocoques porteurs de caractères de résistance transférables. Ann. Inst. Pasteur 113, 59–66 (1967).Google Scholar
  27. Bouanchaud, D., Scavizzi, M. R., Chabbert, Y. A.: Elimination by ethidium bromide of antibiotic resistance in Enterobacteria and Staphylococci. J. gen. Microbiol. 54, 417–425 (1968).PubMedGoogle Scholar
  28. Bowne, S. W., Rogers, P.: Accumulation of repressor for ornithine transcarbamylase synthesis in Escherichia coli mediated by chloramphenicol. Biochim. biophys. Acta (Amst.) 76, 600–613 (1963).PubMedGoogle Scholar
  29. Brinton, C. C., Jr.: The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram-negative bacteria. Trans. N.Y. Acad. Sci. 27, 1003–1054 (1965).PubMedGoogle Scholar
  30. Brinton, C. C., Jr., Gemski, P., Carnahan, J.: A new type of bacterial pilus genetically controlled by the fertility factor of E. coli K12 and its role in chromosome transfer. Proc. nat. Acad. Sci. (Wash.) 52, 776–783 (1964).PubMedGoogle Scholar
  31. Brock, T. D.: Streptomycin. In: Biochemical studies of antimicrobial drugs. Symp. Soc. gen. Microbiol. 16, 131–168 (1966).Google Scholar
  32. Brody, T. M., Hurwitz, R., Bain, J. A.: Magnesium and the effects of the tetracycline antibiotics on oxidative processes in mitochondria. Antibiot. et Chemother. (Basel) 4, 864–870 (1954).Google Scholar
  33. Cannon, M., Krug, R., Gilbert, W.: The binding of s-RNA by Escherichia coli ribosomes. J. molec. Biol. 7, 360–378 (1963).PubMedGoogle Scholar
  34. Cavalli, L. L., Maccacaro, G. A.: Polygenic inheritance of drug-resistance in the bacterium Escherichia coli. Heredity 6, 311–331 (1952).Google Scholar
  35. Chabbert, Y. A., Baudens, J. G.: Transmissible resistance to six groups of antibiotics in Salmonella infections. Antimicrobial Agents and Chemother., p. 380–383 (1965).Google Scholar
  36. Chabbert, Y. A., Baudens, J. G., Bouanchaud, D. H.: Medical aspects of transferable drug resistance. In: Ciba Foundation Symposium on Drug Resistance in Micro-Organisms, p. 227–239. Ed. by G. E. Wolstenholme and C. M. O'Connor. London: J. & A. Churchill 1969.Google Scholar
  37. Chabbert, Y. A., Baudens, J. G., Gerbaud, G. R.: Variations sous l'influence de l'acriflavine et transduction de la résistance à la kanamycine et au chloramphénicol chez les Staphylocoques. Ann. Inst. Pasteur 107, 678–690 (1964).Google Scholar
  38. Chuit, C. F.: Résistance à la tétracycline et au chloramphénicol chez Escherichia coli K12. Thèse, Genève 1968.Google Scholar
  39. Chuit, C. F., Pitton, J. S.: Non-transferable tetracycline resistance in Escherichia coli K12. Chemotherapy 14, 253–257 (1969).PubMedGoogle Scholar
  40. Clowes, R. C., Hayes, W.: Experiments in microbial genetics. Oxford-Edinburgh: Blackwell 1968.Google Scholar
  41. Cole, M., Sutherland, R.: The role of penicillin acylase in the resistance of gramnegative bacteria to penicillins. J. gen. Microbiol. 42, 345–356 (1966).PubMedGoogle Scholar
  42. Connamacher, R. H., Mandel, H. G.: Binding of tetracycline to the 30S ribosomes and to polyuridilic acid. Biochim. biophys. Acta (Amst.) 166, 475–486 (1968).PubMedGoogle Scholar
  43. Couturier, M., Desmet, L., Thomas, R.: High pleiotrophy of streptomycin mutations in Escherichia coli. Biochem. biophys. Res. Commun. 16, 244–248 (1964).PubMedGoogle Scholar
  44. Cox, E. C., White, J. R., Flaks, J. G.: Streptomycin action on the ribosome. Proc. nat. Acad. Sci. (Wash.) 51, 703–709 (1964).PubMedGoogle Scholar
  45. Cundliffe, E., McQuillen, K.: Bacterial protein synthesis: the effects of antibiotics. J. molec. Biol. 30, 137–146 (1967).PubMedGoogle Scholar
  46. Das, H. K., Goldstein, A., Kanner, L. C.: Inhibition by chloramphenicol of the growth of nascent protein chains in Escherichia coli. Molec. Pharmacol. 2, 158–170 (1966).Google Scholar
  47. Datta, N.: Transmissible drug resistance in an epidemic strain of Salmonella typhimurium. J. Hyg. (Lond.) 60, 301–310 (1962).Google Scholar
  48. Datta, N., Kontomichalou, P.: Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature (Lond.) 208, 239–241 (1965).PubMedGoogle Scholar
  49. Datta, N., Richmond, M. H.: The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem. J. 98, 204–209 (1966).PubMedGoogle Scholar
  50. Davies, J.: Streptomycin and the genetic code. Cold Spr. Harb. Symp. quant. Biol. 31, 665–670 (1966).Google Scholar
  51. Davies, J., Davis, B. D.: Misreading of RNA codewords induced by aminoglucoside antibiotics: the effect of drug concentration. J. biol. Chem. 243, 3312–3316 (1968).PubMedGoogle Scholar
  52. Day, L. E.: Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system. J. Bact. 91, 1917–1923 (1966a).PubMedGoogle Scholar
  53. Day, L. E.: Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system. J. Bact. 92, 197–203 (1966b).PubMedGoogle Scholar
  54. Demerec, M.: Origin of bacterial resistance to antibiotics. J. Bact. 56, 63–74 (1948).Google Scholar
  55. Dettori, R., Maccacaro, G. A., Piccinin, G. L.: Sex-specific bacteriophages of Escherichia coli K12. G. Microbiol. 9, 141–150 (1961).Google Scholar
  56. Dubin, D. T.: Some effects of streptomycin on RNA metabolism in Escherichia coli. J. molec. Biol. 8, 749–767 (1964).PubMedGoogle Scholar
  57. Dunsmoor, C. L., Pim, K. L., Sherris, J. C.: Observations on the inactivation of chloramphenicol by chloramphenicol-resistant Staphylococci. Antimicrobial Agents and Chemother., p. 500–506 (1963).Google Scholar
  58. Elliott, W. H.: The effects of antimicrobial agents on deoxyribonucleic acid polymers. Biochem. J. 86, 562–567 (1963).PubMedGoogle Scholar
  59. Eriksson-Grennberg, K. G.: Resistance of Escherichia coli to penicillins. II. An improved mapping of the ampA gene. Genet. Res. 12, 147–156 (1968).PubMedGoogle Scholar
  60. Eriksson-Grennberg, K. G., Boman, H. G., Torbjörn-Jansson, J. A., Thoren, S.: Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bact. 90, 54–62 (1965).PubMedGoogle Scholar
  61. Falkow, S., Citarella, R. V., Wohlhieter, J. A., Watanabe, T.: The molecular nature of R factors. J. molec. Biol. 17, 102–116 (1966).PubMedGoogle Scholar
  62. Flaks, J. G., Cox, E. C., Witting, M. L., White, J. R.: Polypeptide synthesis with ribosomes from streptomycin-resistant and dependent E. coli. Biochem. biophys. Res. Commun. 7, 390–393 (1962).PubMedGoogle Scholar
  63. Fleming, P. C., Goldner, M., Glass, D. G.: Observations on the nature, distribution and significance of cephalosporinase. Lancet 1963 I, 1399–1401.Google Scholar
  64. Franklin, T. J.: The inhibition of incorporation of leucine into protein of cell-free systems from rat liver and Escherichia coli by chlortetracycline. Biochem. J. 87, 449–453 (1963).PubMedGoogle Scholar
  65. Franklin, T. J.: Resistance of Escherichia coli to tetracyclines. Changes in permeability to tetracyclines in Escherichia coli bearing transferable resistance factors. Biochem. J. 105, 371–378 (1967).PubMedGoogle Scholar
  66. Franklin, T. J., Godfrey, A.: Resistance of Escherichia coli to tetracycline. Biochem. J. 94, 54–60 (1965).PubMedGoogle Scholar
  67. Gale, E. F., Folkes, J. P.: The assimilation of amino acids by bacteria. 15. Action of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493–498 (1953).PubMedGoogle Scholar
  68. Geronimus, L. H., Cohen, S.: Induction of staphylococcal penicillinase. J. Bact. 73, 28–34 (1957).PubMedGoogle Scholar
  69. Gottesman, M. E.: Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J. biol. Chem. 242, 5564–5571 (1967).PubMedGoogle Scholar
  70. Gros, F., Dubert, J. M., Tissieres, A., Bourgeois, S., Michelson, M., Soffer, R., Legault, L.: Regulation of metabolic breakdown and synthesis of messenger RNA in bacteria. Cold Spr. Harb. Symp. quant. Biol. 28, 299–313 (1963).Google Scholar
  71. Hahn, F. E.: Chloramphenicol. In: Antibiotics, vol. I, p. 308–330. Ed. by D. Gottlieb and P. D. Shaw. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  72. Hahn, F. E., Wolfe, A. D.: Mode of action of chloramphenicol. VIII. Resemblance between labile chloramphenicol-ribonucleic acid and deoxyribonucleic acid of Bacillus cereus. Biochem. biophys. Res. Commun. 6, 464–468 (1961).Google Scholar
  73. Hamilton-Miller, J. M. T.: Penicillinase from Klebsiella aerogenes. Biochem. J. 87, 209–214 (1963a).PubMedGoogle Scholar
  74. Hamilton-Miller, J. M. T.: Inducible penicillinase in Proteus morgani. Biochem. biophys. Res. Commun. 13, 43–48 (1963b).PubMedGoogle Scholar
  75. Harada, K., Kameda, M., Suzuki, M., Egawa, R., Mitsuhashi, S.: Studies on the drug resistance of enteric bacteria. 10. Relation between transmissible drug resistance (R) factor and fertility (F) factor in E. coli strain K12. Jap. J. exp. Med. 31, 291–299 (1961).PubMedGoogle Scholar
  76. Harmon, S. A., Baldwin, J. N.: Nature of the determinant controlling penicillinase production in Staphylococcus aureus. J. Bact. 87, 593–597 (1964).PubMedGoogle Scholar
  77. Harwood, J. H., Smith, D. H.: Resistance factor-mediated streptomycin resistance. J. Bact. 97, 1262–1271 (1969).PubMedGoogle Scholar
  78. Hashimoto, H., Hirota, Y.: Gene recombination and segregation of resistance factor R in Escherichia coli. J. Bact. 91, 51–62 (1966).PubMedGoogle Scholar
  79. Hashimoto, H., Kondo, K., Mitsuhashi, S.: Elimination of penicillin resistance of Staphylococcus aureus by treatment with acriflavine. J. Bact. 88, 261–262 (1964).PubMedGoogle Scholar
  80. Hennessey, T. D.: Inducible β-lactamase in Enterobacter. J. gen. Microbiol. 49, 277–285 (1967).PubMedGoogle Scholar
  81. Hierowski, M.: Inhibition of protein synthesis by chlortetracycline in the E. coli in vitro system. Proc. nat. Acad. Sci. (Wash.) 53, 594–599 (1965).PubMedGoogle Scholar
  82. Holmes, I. A., Wild, D. G.: Consequences of inhibition of Escherichia coli by tetracycline antibiotics. Nature (Lond.) 210, 1047–1048 (1966).PubMedGoogle Scholar
  83. Izaki, K., Arima, K.: Disappearance of oxytetracycline accumulation in the cells of multiple drug-resistant Escherichia coli. Nature (Lond.) 200, 384–385 (1963).PubMedGoogle Scholar
  84. Izaki, K., Arima, K.: Effect of various conditions on accumulation of oxytetracycline in Escherichia coli. J. Bact. 89, 1335–1339 (1965).PubMedGoogle Scholar
  85. Izaki, K., Kiuchi, K., Arima, K.: Specificity and mechanism of tetracycline resistance in a multiple drug-resistant strain of Escherichia coli. J. Bact. 91, 628–633 (1966).PubMedGoogle Scholar
  86. Jack, G. W., Richmond, M. H.: A comparative study of eight distinct β-lactamases synthesized by gram-negative bacteria. J. gen. Microbiol. 61, 43–61 (1970).PubMedGoogle Scholar
  87. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961).PubMedGoogle Scholar
  88. Jacob, F., Schaeffer, P., Wollman, E. L.: Episomic elements in bacteria. Symp. Soc. gen. Microbiol. 10, 67–91 (1960).Google Scholar
  89. Jacob, F., Ullman, A., Monod, J.: Délétions fusionnant l'opéron lactose et un opéron purine chez E. coli. J. molec. Biol. 13, 704–719 (1965).Google Scholar
  90. Jacob, F., Wollman, E. L.: Sur les processus de conjugaison et de recombinaison génétique chez E. coli. I. L'induction par conjugaison ou induction zygotique. Ann. Inst. Pasteur 91, 486–510 (1956).Google Scholar
  91. Jago, M., Migliaci, A., Abraham, E. P.: Production of cephalosporinase by Pseudomonas pyocyanea. Nature (Lond.) 199, 375 (1963).PubMedGoogle Scholar
  92. Jarolmen, H., Bondi, A., Crowell, R. L.: Transduction of Staphylococcus aureus to tetracycline resistance in vivo. J. Bact. 89, 1286–1290 (1965).PubMedGoogle Scholar
  93. Jones, J. G., Morrison, G. A.: The bacteriostatic actions of tetracycline and oxytetracycline. J. Pharm. (Lond.) 14, 808–824 (1962).Google Scholar
  94. Julian, G. R.: 14C-lysine peptides synthetized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. molec. Biol. 12, 9–16 (1965).PubMedGoogle Scholar
  95. Kabins, S. A., Cohen, S.: Resistance transfer factor in Enterobacteriaceae. New Engl. J. Med. 275, 248–252 (1966).PubMedGoogle Scholar
  96. Kasatiya, S. S., Baldwin, J. N.: Nature of the determinant of tetracycline resistance in Staphylococcus aureus. Canad. J. Microbiol. 13, 1079–1086 (1967).Google Scholar
  97. Kitamoto, O., Kasai, N., Fukaya, K., Kawashima, A.: Drug-sensitivity of the Shigella strains isolated in 1955. J. Jap. Ass. Infect. Dis. 30, 403–404 (1956); quoted by Watanabe (1963).Google Scholar
  98. Knox, R.: Different types of resistance to different penicillins. In: Ciba Foundation Study Group No 13: Resistance of bacteria to the penicillins, p. 76–83. London: J. & A. Churchill 1962.Google Scholar
  99. Knox, R., Smith, J. T.: Antibacterial activity, penicillinase stability and inducing ability of different penicillins. J. gen. Microbiol. 29, 471–479 (1962).Google Scholar
  100. Kondo, S., Okanishi, M., Utahara, R., Umezawa, H.: Inactivation of aminoglycosidic antibiotics by resistant organisms. Jap. J. med. Sci. Biol. 21, 221–223 (1968).PubMedGoogle Scholar
  101. Krcmery, V., Kellen, J.: Changes in some enzymes of bacterial electron transport accompanying development of resistance to oxytetracycline. J. Bact. 92, 1264–1266 (1966).PubMedGoogle Scholar
  102. Kroon, A. M.: Protein synthesis in mitochondria. III. On the effects of inhibitors on the incorporation of amino acids into protein by intact mitochondria and digitonin fractions. Biochim. biophys. Acta (Amst.) 108, 275–284 (1965).PubMedGoogle Scholar
  103. Kucan, Z., F. Lipmann: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. biol. Chem. 239, 516–520 (1964).PubMedGoogle Scholar
  104. Kurland, C. G., Nomura, M., Watson, J. D.: The physical properties of the chloromycetin particles. J. molec. Biol. 4, 388–394 (1962).PubMedGoogle Scholar
  105. Kuschner, D. J.: The basis of chloramphenicol resistance in Pseudomonas fluorescens. Arch. Biochem. 58, 347–355 (1955).Google Scholar
  106. Kuwano, M., Ishikawa, M., Endo, H.: Su-II-specific restriction of amber suppression by mutation to streptomycin resistance. J. molec. Biol. 33, 513–516 (1968).PubMedGoogle Scholar
  107. Laskin, A. I., Chan, W. M.: Inhibition by tetracyclines of polyuridilic acid-directed phenylalanine incorporation in Escherichia coli cell-free systems. Biochem. biophys. Res. Commun. 14, 137–142 (1964).PubMedGoogle Scholar
  108. Last, J. A., Izaki, K., Snell, J. F.: The failure of tetracycline to bind to Escherichia coli ribosomes. Biochim. biophys. Acta (Amst.) 103, 532–534 (1965).PubMedGoogle Scholar
  109. Last, J. A., Izaki, K., Snell, J. F.: The resistance of Escherichia coli to oxytetracycline. Canad. J. Microbiol. 15, 1077–1083 (1969).Google Scholar
  110. Lebek, G.: Über die Entstehung mehrfachresistenter Salmonellen. Ein experimenteller Beitrag. Zbl. Bakt., I. Abt. Orig. 188, 494–505 (1963a).Google Scholar
  111. Lebek, G.: Übertragung der Mehrfachresistenz gegen Antibiotika und Chemotherapeutika von E. coli auf andere Species gramnegativer Bakterien. Experimenteller Beitrag. Zbl. Bakt., I. Abt. Orig. 189, 213–223 (1963b).Google Scholar
  112. Lebek, G.: Die Übertragung der Mehrfachresistenz gegen Antibiotika und Chemotherapeutika in ihrer Bedeutung für den Hospitalismus mit mehrfachresistenten gramnegativen Darmbakterien. Zbl. Bakt., I. Abt. Orig. 191, 387–395 (1963c).Google Scholar
  113. Lederberg, E. M., Cavalli-Sforza, L., Lederberg, J.: Interaction of streptomycin and a suppressor for galactose fermentation in E. coli K12. Proc. nat. Acad. Sci. (Wash.) 51, 678–682 (1964).PubMedGoogle Scholar
  114. Lederberg, J.: Streptomycin resistance: a genetically recessive mutation. J. Bact. 61, 549–550 (1951).PubMedGoogle Scholar
  115. Lederberg, J.: Bacterial protoplasts induced by penicillin. Proc. nat. Acad. Sci. (Wash.) 42, 574–577 (1956).PubMedGoogle Scholar
  116. Lederberg, J., Lederberg, E. M.: Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399–406 (1952).PubMedGoogle Scholar
  117. Lederberg, S.: Suppression of multiplication of heterologous bacteriophages in lysogenic bacteria. Virology 3, 496–513 (1957).PubMedGoogle Scholar
  118. Lewis, M. J.: Multiple transmissible drug resistance in an outbreak of Shigella flexneri infection. Lancet 1967 II, 953–956.Google Scholar
  119. Likover, T. E., Kurland, C. G.: Ribosomes from a streptomycin-dependent strain of Escherichia coli. J. molec. Biol. 25, 497–504 (1967).Google Scholar
  120. Lindqvist, R. Chr., Nordström, K.: Resistance of Escherichia coli to penicillins. VII. Purification and characterization of a penicillinase mediated by the R factor R1. J. Bact. 101, 232–239 (1970).PubMedGoogle Scholar
  121. Lindström, E. B., Boman, H. G., Steele, B. B.: Resistance of Escherichia coli to penicillins. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA-containing strains. J. Bact. 101, 218–231 (1970).Google Scholar
  122. Loeb, T.: Isolation of a bacteriophage specific for the F+ and Hfr mating types of E. coli. Science 131, 932–933 (1960).PubMedGoogle Scholar
  123. Loomis, W. F.: On the mechanism of action of aureomycin. Science 111, 474 (1950).PubMedGoogle Scholar
  124. Lucas-Lenard, J., Haenni, A.: Requirement of guanosine-5′-triphosphate for ribosomal binding of aminoacyl-s-RNA. Proc. nat. Acad. Sci. (Wash.) 59, 554–560 (1968).PubMedGoogle Scholar
  125. Luria, S. E., Delbrück, M.: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).PubMedGoogle Scholar
  126. Luzzatto, L., Schlessinger, D., Apirion, D.: Escherichia coli: high resistance or dependence on streptomycin produced by the same allele. Science 161, 478–479 (1968).PubMedGoogle Scholar
  127. Macuch, P., Krcmery, V., Parrakova, E., Seckarova, A.: Transmissibility of tetracycline resistance from antibiotic-selected mutants E. coli to S. typhimurium and vice-versa. In: Vth Internat. Congr. of Chemotherapy, Vienna 1967, vol. IV, p. 243–246. Vienna: Verlag der Wiener Med. Akademie 1967.Google Scholar
  128. Mandelstam, J., Rogers, H. J.: The incorporation of amino acids into the cell wall mucopeptide of Staphylococci and the effects of antibiotics on the process. Biochem. J. 72, 654–662 (1959).PubMedGoogle Scholar
  129. Markovitz, A., Baker, B.: Suppression of radiation sensitivity and capsular polysaccharide synthesis in Escherichia coli K12 by ochre suppressors. J. Bact. 94, 388–395 (1967).PubMedGoogle Scholar
  130. Maxwell, I. H.: Studies of the binding of tetracycline to ribosomes in vitro. Molec. Pharmacol. 4, 25–37 (1968).Google Scholar
  131. May, J. W., Houghton, R. H., Perret, C. J.: The effect of growth at elevated temperatures on some heritable properties of Staphylococcus aureus. J. gen. Microbiol. 37, 157–169 (1964).PubMedGoogle Scholar
  132. Merkel, J. R., Steers, E.: Relationship between “chloramphenicol reductase activity” and chloramphenicol resistance in Escherichia coli. J. Bact. 66, 389–396 (1953).PubMedGoogle Scholar
  133. Meynell, E., Datta, N.: The relation of resistance transfer factors to the F-factor (sex-factor) of Escherichia coli K12. Genet. Res. 7, 134–140 (1966a).PubMedGoogle Scholar
  134. Meynell, E., Datta, N.: The nature and incidence of conjugation factors in Escherichia coli. Genet. Res. 7, 141–148 (1966b).PubMedGoogle Scholar
  135. Meynell, E., Datta, N.: Mutant drug-resistant factors of high transmissibility. Nature (Lond.) 214, 885–887 (1967).PubMedGoogle Scholar
  136. Mise, K., Suzuki, Y.: Temperature-sensitive chloramphenicol acetyltransferase from Escherichia coli carrying mutant R factors. J. Bact. 95, 2124–2130 (1968).PubMedGoogle Scholar
  137. Mitsuhashi, S.: Epidemiological and genetic study of drug resistance in Staphylococcus aureus. Jap. J. Microbiol. 2, 49–68 (1966).Google Scholar
  138. Mitsuhashi, S., Harada, K., Hashimoto, H.: Multiple resistance of enteric bacteria and transmission of drug-resistance to other strains by mixed cultivation. Jap. J. exp. Med. 30, 179–184 (1960).PubMedGoogle Scholar
  139. Mitsuhashi, S., Harada, K., Kameda, M.: On the drug-resistance of enteric bacteria. 6. Spontaneous and artificial elimination of transmissible drug-resistance factors. Jap. J. exp. Med. 31, 119–123 (1961a).PubMedGoogle Scholar
  140. Mitsuhashi, S., Harada, K., Kameda, M.: Elimination of transmissible drug-resistance by treatment with acriflavine. Nature (Lond.) 189, 947 (1961b).PubMedGoogle Scholar
  141. Miyamura, S.: Inactivation of chloramphenicol by chloramphenicol resistant bacteria. J. pharm. Sci. 53, 604–607 (1964).PubMedGoogle Scholar
  142. Monro, R. E.: Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli. J. molec. Biol. 26, 147–151 (1967).PubMedGoogle Scholar
  143. Monro, R. E., Marcker, K. A.: Ribosome-catalyzed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. molec. Biol. 25, 347–350 (1967).PubMedGoogle Scholar
  144. Moore, P. B., Traut, R. R., Noller, H., Pearson, P., Delius, H.: Ribosomal proteins of Escherichia coli. II. Proteins from the 30S subunit. J. molec. Biol. 31, 441–461 (1968).PubMedGoogle Scholar
  145. Moyed, H. S.: Induced phenotypic resistance to an antimetabolite. Science 131, 1449 (1960).PubMedGoogle Scholar
  146. Nakamoto, T., Conway, T. W., Allende, J. E., Spyrides, C. P., Lipmann, F.: Formation of peptide bonds. I. Peptide formation from aminoacyl-s-RNA. Cold Spr. Harb. Symp. quant. Biol. 28, 227–231 (1963).Google Scholar
  147. Neu, H. C.: Effect of β-lactamase location in Escherichia coli on penicillin synergy. Appl. Microbiol. 17, 783–786 (1969).PubMedGoogle Scholar
  148. Neu, H. C., Chou, J.: Release of surface enzymes in Enterobacteriaceae by osmotic shock. J. Bact. 94, 1934–1945 (1967).PubMedGoogle Scholar
  149. Nomura, M., Hosokawa, K.: Biosynthesis of ribosomes: fate of chloramphenicol particles and of pulse-labelled RNA in Escherichia coli. J. molec. Biol. 12, 242–265 (1965).PubMedGoogle Scholar
  150. Nordström, K., Eriksson-Grennberg, K. G., Boman, H. G.: Resistance of Escherichia coli to penicillins. III. AmpB, a locus affecting episomally and chromosomally mediated resistance to ampicillin and chloramphenicol. Genet. Res. 12, 157–168 (1968).PubMedGoogle Scholar
  151. Nossal, N. G., Heppel, L. A.: The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. biol. Chem. 241, 3055–3062 (1966).PubMedGoogle Scholar
  152. Novick, R. P.: Micro-iodometric assay for penicillinase. Biochem. J. 83, 236–240 (1962).PubMedGoogle Scholar
  153. Novick, R. P.: Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J. gen. Microbiol. 33, 121–136 (1963).PubMedGoogle Scholar
  154. Novick, R. P.: Extrachromosomal inheritance in bacteria. Bact. Rev. 33, 210–263 (1969).PubMedGoogle Scholar
  155. Novick, R. P., Richmond, M. H.: Nature and interactions of the genetic elements governing penicillinase synthesis in Staphylococcus aureus. J. Bact. 90, 467–480 (1965).PubMedGoogle Scholar
  156. Novick, R. P., Morse, S. I.: In vivo transmission of drug resistance factors between strains of Staphylococcus aureus. J. exp. Med. 125, 45–59 (1967).PubMedGoogle Scholar
  157. Ochiai, K., Yamanaka, T., Kimura, K., Sawada, O.: Studies of inheritance of drug resistance between Shigella strains and Escherichia coli strains. Nippon Iji Shimpo 1861, 34–46 (1959); quoted by Watanabe (1963).Google Scholar
  158. Okamoto, S., Mizuno, D.: Inhibition by chloramphenicol of protein synthesis in the cell-free system of a chloramphenicol-resistant strain of Escherichia coli. Nature (Lond.) 195, 1022–1023 (1962).PubMedGoogle Scholar
  159. Okamoto, S., Mizuno, D.: Mechanism of chloramphenicol and tetracycline resistance in Escherichia coli. J. gen. Microbiol. 35, 125–133 (1964).PubMedGoogle Scholar
  160. Okamoto, S., Suzuki, Y.: Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome “R”. Nature (Lond.) 208, 1301–1303 (1965).PubMedGoogle Scholar
  161. Okamoto, S., Suzuki, Y., Mise, K., Nakaya, R.: Occurrence of chloramphenicol-acetylating enzymes in various gram-negative bacilli. J. Bact. 94, 1616–1622 (1967).PubMedGoogle Scholar
  162. Ozaki, M., Mizushima, S., Nomura, M.: Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature (Lond.) 222, 333–339 (1969).PubMedGoogle Scholar
  163. Park, J. T.: Uridine-5′-pyrophosphate derivatives. I. Isolation from Staphylococcus aureus. J. biol. Chem. 194, 877–884 (1952).PubMedGoogle Scholar
  164. Percival, A., Brumfitt, W., Louvois, J. de: The role of penicillinase in determining natural and acquired resistance of gramnegative bacteria to penicillins. J. gen. Microbiol. 32, 77–89 (1963).PubMedGoogle Scholar
  165. Perret, C. J.: Iodometric assay of penicillinase. Nature (Lond.) 174, 1012–1013 (1954).PubMedGoogle Scholar
  166. Piffaretti, J. C., Allet, B., Pitton, J. S.: Analogy between in vivo and in vitro biological effect of chloramphenicol and its acetylated derivatives. FEBS Letters 11, 26–28 (1970).PubMedGoogle Scholar
  167. Piffaretti, J. C., Pitton, J. S.: Chloramphenicol acetylation in whole cells of Escherichia coli carrying R-factors. Characterization and kinetic studies. Chemotherapy 15, 84–98 (1970).PubMedGoogle Scholar
  168. Piguet, J. D., Pitton, J. S.: Standardisation de l'interprétation des dosages microbiologiques d'antibiotiques. Emploi d'une calculatrice électronique. I. Présentation du problème. Pharm. Acta Helv. 43, 713–725 (1968).PubMedGoogle Scholar
  169. Pitton, J. S., Anderson, E. S.: The inhibitory action of transfer factors on lysis of Escherichia coli K12 by phages µ2 and 2. Genet. Res. 16, 215–224 (1970).PubMedGoogle Scholar
  170. Pollock, M. R.: Penicillinase. In: Ciba Foundation Study Group No 13: Resistance of bacteria to the penicillins, p. 56–70. Ed. by G. E. Wolstenholme and C. M. O'Connor. London: J. & A. Churchill 1962.Google Scholar
  171. Poston, S. M.: Cellular location of the genes controlling penicillinase production and resistance to streptomycin and tetracycline in a strain of Staphylococcus aureus. Nature (Lond.) 210, 802–804 (1966).PubMedGoogle Scholar
  172. Ramsey, H. H.: Protein synthesis as a basis for chloramphenicol-resistance in Staphylococcus aureus. Nature (Lond.) 182, 602–603 (1958).PubMedGoogle Scholar
  173. Rassekh, M., Pitton, J. S.: Streptomycin resistance in some wild-type strains of Enterobacteriaceae. Chemotherapy (in press).Google Scholar
  174. Reeve, E. C. R.: Genetic analysis of some mutations causing resistance to tetracycline in Escherichia coli K12. Genet. Res. 11, 303–309 (1968).PubMedGoogle Scholar
  175. Reeve, E. C. R., Doherty, P.: Linkage relationship of two genes causing partial resistance to chloramphenicol in Escherichia coli. J. Bact. 96, 1450–1451 (1968).PubMedGoogle Scholar
  176. Reeve, E. C. R., Suttie, D. R.: Chromosomal location of a mutation causing chloramphenicol resistance in Escherichia coli K12. Genet. Res. 11, 97–104 (1968).PubMedGoogle Scholar
  177. Rendi, R., Ochoa, S.: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. biol. Chem. 237, 3711–3713 (1962).PubMedGoogle Scholar
  178. Ritz, H. L., Baldwin, J. N.: Transduction of capacity to produce staphylococcal penicillinase. Proc. Soc. exp. Biol. (N.Y.) 107, 678–680 (1961).PubMedGoogle Scholar
  179. Rogers, H. J.: Mode of action of the penicillins. In: Ciba Foundation Study Group No 13: Resistance of bacteria to the penicillins, p. 25–43. London: J. & A. Churchill 1962.Google Scholar
  180. Rolinson, G. N., Stevens, S.: Microbiological studies on a new broad-spectrum penicillin, “Penbritin”. Brit. med. J. 1961 II, 191–196.Google Scholar
  181. Rosenkranz, H. S.: Basis of streptomycin resistance in Escherichia coli with a “multiple drug resistance” episome. Biochim. biophys. Acta (Amst.) 80, 342–345 (1964).PubMedGoogle Scholar
  182. Rownd, R., Nakaya, R., Nakamura, A.: Molecular nature of the drug-resistance factors of the Enterobacteriaceae. J. molec. Biol. 17, 376–393 (1966).PubMedGoogle Scholar
  183. Sabath, L. D., Gerstein, D. A., Loder, P. B., Finland, M. F.: Independent segregation of chloramphenicol resistance in Staphylococcus aureus. Antimicrobial Agents and Chemother., p. 264–270 (1967).Google Scholar
  184. Sabath, L. D., Jago, M., Abraham, E. P.: Cephalosporinase and penicillinase activity of a β-lactamase from Pseudomonas pyocyanea. Biochem. J. 96, 739–752 (1965).PubMedGoogle Scholar
  185. Sarkar, S., Thach, R. E.: Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc. nat. Acad. Sci. (Wash.) 60, 1479–1486 (1968).PubMedGoogle Scholar
  186. Sawai, T., Mitsuhashi, S., Yamagishi, S.: Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in gram-negative rod bacteria resistant to α-aminobenzyl-penicillin. Jap. J. Microbiol. 12, 423–434 (1968a).PubMedGoogle Scholar
  187. Sawai, T., Mitsuhashi, S., Yamagishi, S.: Comparison of the chromosomal and extra-chromosomal genetic determinants controlling staphylococcal penicillinase production. Jap. J. Microbiol. 12, 531–533 (1968b).PubMedGoogle Scholar
  188. Saz, A. K., Martinez, L. M.: Enzymatic basis of resistance to aureomycin. II. Inhibition of electron transport in Escherichia coli by aureomycin. J. biol. Chem. 233, 1020–1022 (1958).PubMedGoogle Scholar
  189. Saz, A. K., Slie, R. B.: Inhibition of organic nitro-reductase by aureomycin in cell-free extracts. II. Co-factor requirements for the nitroreductase enzyme complex. Arch. Biochem. 51, 5–16 (1954).PubMedGoogle Scholar
  190. Shaw, W. V.: Enzymatic chloramphenicol acetylation and R factor induced antibiotic resistance in Enterobacteriaceae. Antimicrobial Agents and Chemother., p. 221–226 (1966).Google Scholar
  191. Shaw, W. V.: The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. biol. Chem. 242, 687–693 (1967).PubMedGoogle Scholar
  192. Shaw, W. V., Brodsky, R. F.: Chloramphenicol resistance by enzymatic acetylation: comparative aspects. Antimicrobial Agents and Chemother., p. 257–263 (1967).Google Scholar
  193. Shaw, W. V., Brodsky, R. F.: Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J. Bact. 95, 28–36 (1968).PubMedGoogle Scholar
  194. Smith, D. H.: R-factor mediated resistance to new aminoglycoside antibiotics. Lancet 1967 I, 252–254.Google Scholar
  195. Smith, H. W., Halls, S.: Observations on infective drug resistance in Britain. Brit. med. J. 1966 I, 266–269.Google Scholar
  196. Smith, J. T.: Penicillinase and ampicillin resistance in a strain of Escherichia coli. J. gen. Microbiol. 30, 299–306 (1963).PubMedGoogle Scholar
  197. Smith, J. T.: R-factor gene expression in gram-negative bacteria. J. gen. Microbiol. 55, 109–120 (1969).PubMedGoogle Scholar
  198. Smith, J. T., Hamilton-Miller, J. M. T.: Differences between penicillinases from gram-positive and gram-negative bacteria. Nature (Lond.) 197, 976–978 (1963).PubMedGoogle Scholar
  199. Sompolinsky, D., Ben-Yakov, M., Aboud, M., Boldur, I.: Transferable resistance factors with mutator effect in Salmonella typhi. Mutation Res. 4, 119–127 (1967).Google Scholar
  200. Speyer, J. F., Lengyel, P., Basilio, C.: Ribosomal location of streptomycin sensitivity. Proc. nat. Acad. Sci. (Wash.) 48, 684–686 (1962).PubMedGoogle Scholar
  201. Speyer, J. F., Lengyel, P., Basilio, C., Wahba, A. J., Gardner, R. S., Ochoa, S.: Synthetic polynucleotides and the amino acid code. Cold Spr. Harb. Symp. quant. Biol. 28, 559–567 (1963).Google Scholar
  202. Spotts, C. R.: Physiological and biochemical studies on streptomycin dependence in Escherichia coli. J. gen. Microbiol. 28, 347–365 (1962).PubMedGoogle Scholar
  203. Spotts, C. R., Stanier, R. Y.: Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature (Lond.) 192, 633–637 (1961).PubMedGoogle Scholar
  204. Staehelin, T., Meselson, M.: Determination of streptomycin sensitivity by a subunit of the 30S ribosome of Escherichia coli. J. molec. Biol. 19, 207–210 (1966).PubMedGoogle Scholar
  205. Suarez, G., Nathans, D.: Inhibition of aminoacyl-s-RNA binding to ribosomes by tetracycline. Biochem. biophys. Res. Commun. 18, 743–750 (1965).Google Scholar
  206. Suzuki, I., Kaji, H., Kaji, A.: Binding of specific s-RNA to 30S ribosomal subunits: effects of 50S ribosomal subunits. Proc. nat. Acad. Sci. (Wash.) 55, 1483–1490 (1966).Google Scholar
  207. Suzuki, Y., Okamoto, S., Kono, M.: Basis of chloramphenicol resistance in naturally isolated resistant Staphylococci. J. Bact. 92, 798–799 (1966).PubMedGoogle Scholar
  208. Swallow, D. L., Sneath, P. H. A.: Studies on staphylococcal penicillinase. J. gen. Microbiol. 28, 461–469 (1962).PubMedGoogle Scholar
  209. Sypherd, P. S., Strauss, N.: The role of RNA in repression of enzyme synthesis. Proc. nat. Acad. Sci. (Wash.) 50, 1059–1065 (1963).PubMedGoogle Scholar
  210. Taylor, A. L., Trotter, C. D.: Revised linkage map of Escherichia coli. Bact. Rev. 31, 332–353 (1967).PubMedGoogle Scholar
  211. Traub, P., Hosokawa, K., Nomura, M.: Streptomycin sensitivity and the structural components of the 30S ribosomes of Escherichia coli. J. molec. Biol. 19, 211–214 (1966).PubMedGoogle Scholar
  212. Traub, P., Nomura, M.: Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. nat. Acad. Sci. (Wash.) 59, 777–784 (1968).PubMedGoogle Scholar
  213. Traut, R. R.: Acrylamide gel electrophoresis of radioactive ribosomal protein. J. molec. Biol. 21, 571–576 (1966).PubMedGoogle Scholar
  214. Traut, R. R., Monro, R. E.: The puromycin reaction and its relation to protein synthesis. J. molec. Biol. 10, 63–72 (1964).PubMedGoogle Scholar
  215. Umezawa, H., Okanishi, M., Kondo, S., Hamana, K., Utahara, R., Maeda, K., Mitsuhashi, S.: Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia coli carrying R factor. Science 157, 1559–1561 (1967).PubMedGoogle Scholar
  216. Unowsky, J., Rachmeier, M.: Mechanisms of antibiotic resistance determined by resistance-transfer factors. J. Bact. 92, 358–365 (1966).PubMedGoogle Scholar
  217. Vazquez, D.: Uptake and binding of chloramphenicol by sensitive and resistant organisms. Nature (Lond.) 203, 257–258 (1964a).PubMedGoogle Scholar
  218. Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. biophys. Res. Commun. 15, 464–468 (1964b).PubMedGoogle Scholar
  219. Vazquez, D.: Binding of chloramphenicol to ribosomes: the effect of a number of antibiotics. Biochim. biophys. Acta (Amst.) 114, 277–288 (1966a).PubMedGoogle Scholar
  220. Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria: their effect on amino acid incorporation in a cell-free system. Biochim. biophys. Acta (Amst.) 114, 289–295 (1966b).PubMedGoogle Scholar
  221. Vazquez, D.: Mode of action of chloramphenicol and related antibiotics. In: Biochemical studies of antimicrobial drugs. Symp. Soc. gen. Microbiol. 16, 169–191 (1966c).Google Scholar
  222. Vazquez, D., Monro, R. E.: Effects of some inhibitors of protein synthesis on the binding of aminoacyl-t-RNA to ribosomal subunits. Biochim. biophys. Acta (Amst.) 142, 155–173 (1967).PubMedGoogle Scholar
  223. Waring, M. J.: The effects of antimicrobial agents on ribonucleic acid polymerase. Molec. Pharmacol. 1, 1–13 (1965).Google Scholar
  224. Watanabe, T.: Infective heredity of bacterial drug resistance. Bact. Rev. 27, 87–115 (1963).PubMedGoogle Scholar
  225. Watanabe, T., Fukasawa, T.: Episome-mediated transfer of drug resistance in Enterobacteriaceae. II. Elimination of resistance factors with acridine dyes. J. Bact. 81, 679–683 (1961a).PubMedGoogle Scholar
  226. Watanabe, T., Fukasawa, T.: Episomic resistance factors in Enterobacteriaceae. XII. Chromosomal attachment of resistance transfer factor in Escherichia coli strain K12. Med. Biol. (Tokyo) 59, 180–184 (1961b); quoted by Watanabe (1963).Google Scholar
  227. Watanabe, T., Fukasawa, T.: Episome-mediated transfer of drug resistance in Enterobacteriaceae. IV. Interactions between resistance transfer factor and F-factor in Escherichia coli K12. J. Bact. 83, 727–735 (1962).PubMedGoogle Scholar
  228. Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969).PubMedGoogle Scholar
  229. Weisberger, A. S., Wolfe, S., Armentrout, S.: Inhibition of protein synthesis in mammalian cell-free systems by chloramphenicol. J. exp. Med. 120, 161–181 (1964).PubMedGoogle Scholar
  230. Winshell, E., Shaw, W. V.: Kinetics of induction and purification of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J. Bact. 98, 1248–1257 (1969).PubMedGoogle Scholar
  231. Wolfe, A. D., Hahn, F. E.: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosomes. Biochim. biophys. Acta (Amst.) 95, 146–155 (1965).PubMedGoogle Scholar
  232. Wollman, E. L., Jacob, F.: Sur les processus de conjugaison et de recombinaison chez E. coli. II. La localisation chromosomique du prophage λ et les conséquences génétiques de l'induction zygotique. Ann. Inst. Pasteur 93, 323–339 (1957).Google Scholar
  233. Yamada, T., Tipper, D., Davies, J.: Enzymatic inactivation of streptomycin by R factor-resistant Escherichia coli. Nature (Lond.) 219, 288–291 (1968).PubMedGoogle Scholar
  234. Yee, R. B., Gezon, H. M.: Ribonucleic acid of chloramphenicol treated Shigella flexneri. J. gen. Microbiol. 32, 299–306 (1963).PubMedGoogle Scholar
  235. Zeeuw, J. R. de: Accumulation of tetracyclines by Escherichia coli. J. Bact. 95, 498–506 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • J.-S. Pitton
    • 1
  1. 1.Institute of Medical MicrobiologyUniversity of GenevaGenevaSwitzerland

Personalised recommendations