The bounding theory of turbulence and its physical significance in the case of turbulent couette flow

  • Friedrich H. Busse
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 12)


Boundary Layer Couette Flow Taylor Vortex Angular Momentum Transport Plane Couette Flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Busse, F. H. Report MPI/Astro 8/68, Max-Planck-Institut für Physik und Astrophysik, Munich, (1968)Google Scholar
  2. Busse, F. H. Z. Angew. Math. Phys. 20, 1–14, (1969a)Google Scholar
  3. Busse, F. H. J. Fluid Mech. 37, 457–477, (1969b)Google Scholar
  4. Busse, F. H. J. Fluid Mech. 41, 219–240, (1970a) referred to as IGoogle Scholar
  5. Busse, F. H. Z. angew. Math. Mech. [ZAMM] 50, T173–T174, (1970b)Google Scholar
  6. Deardorff, J. W. and Willis, G. E. J. Fluid Mech. 28, 675–704, (1967)Google Scholar
  7. Debler, W., Füner, E., and Schaaf, B. Publ. EM 68-2, Dept. Eng. Mech., University of Michigan, Ann Arbor (1968)Google Scholar
  8. Donnelly, R. J., and Simon, N. J. J. Fluid Mech. 7, 401–418, (1960)Google Scholar
  9. Howard, L. N. J. Fluid Mech. 17, 405–432, (1963).Google Scholar
  10. Malkus, W. V.R. Proc. Roy. Soc. A225, 196, (1954)Google Scholar
  11. Nickerson, E. C. J. Fluid Mech. 38, 807–815, (1969)Google Scholar
  12. Ustimenko, B. P., and Zmeikov, V. N. High Temperature 2, 220–228, (1964) Translated from Teplofizika Vysokikh Temperatur 2, 250–254, (1964)Google Scholar
  13. Wendt, F. Ingenieur-Archiv 4, 577–594, (1933)Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Friedrich H. Busse
    • 1
  1. 1.Department of Planetary and Space ScienceUniversity of CaliforniaLos Angeles

Personalised recommendations