Advertisement

Turbulence in a stratified ocean

  • Walter H. Munk
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 12)

Keywords

Internal Wave Stratify Ocean Inertial Frequency Critical Richardson Number Salt Finger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agar, J. N. and J. C. R. Turner (1960). Proc. Roy. Soc. A, 255, 307.Google Scholar
  2. 2.
    Cox, C., Y. Nagata and T. Osborn (1969) Oceanic fine structure and internal waves. Bull. Japanese Soc. Fisheries Oceanogr., “Papers in Dedication to Prof. Michitaka Uda,” 67–71.Google Scholar
  3. 3.
    Davis, R. E. and A. Acrivos (1967) The stability of oscillatory internal waves. J. Fluid Mech., 30, 723–736.Google Scholar
  4. 4.
    Garrett, C. J. R. and W. H. Munk (1971) Internal wave spectra in the presence of fine-structure. J. Phys. Oceanog. (in press).Google Scholar
  5. 5.
    Garrett, C. J. R. and W. H. Munk (1971) Space-time scales of internal waves. To be submitted to Geophys. Fl. Dynamics.Google Scholar
  6. 6.
    Munk, W. H. (1966) Abyssal recipes. Deep-Sea Research 113, 707–730.Google Scholar
  7. 7.
    Munk, W. H. and N. Phillips (1968) Coherence and band-structure of inertial motion in the sea. Rev. Geophys. 6, 447–472.Google Scholar
  8. 8.
    Orlanski, I. and K. Bryan (1969) Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res., 74, 6975–6983.Google Scholar
  9. 9.
    Phillips, O. M. (1971) On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1, 1–6.Google Scholar
  10. 10.
    Reid, R. 0. (1971) A special case of Phillips' general theory of sampling statistics for a layered medium. J. Phys. Oceanogr., 1 61–62.Google Scholar
  11. 11.
    Roden, G. I. (1971) Spectra of North Pacific temperature and salinity perturbations in the depth domain. J. Phys. Oceanogr., 1, 25–33.Google Scholar
  12. 12.
    Snowden, P. N. and J. C. R. Turner (1960). Trans. Faraday Soc., 59, 1409, 1812.Google Scholar
  13. 13.
    Stern, M. E. (1960). Tellus, 12, 172.Google Scholar
  14. 14.
    Stommel, H., A. B. Arons and D. Blanchard (1956). Deep-Sea Research, 3, 152.Google Scholar
  15. 15.
    Stommel, H. and K. N. Fedorov (1967) Small scale structure in temperature and salinity. Tellus, 19, 306.Google Scholar
  16. 16.
    Velarde, M. G. and R. S. Schechter (1971) Thermal diffusion and convective stability (II): an analysis of the convected fluxes. Phys. of Fl. (in press).Google Scholar
  17. 17.
    Webster, T. F. (1971) Estimates of the coherence of ocean currents over vertical distances (in press).Google Scholar
  18. 18.
    Woods, J. D. (1968) Wave-induced shear instability in the summer thermocline. J. F1. Mech., 32, 791–800.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Walter H. Munk
    • 1
    • 2
  1. 1.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLa Jolla
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaLa Jolla

Personalised recommendations