Homogeneous chaos expansions

  • G. Kallianpur
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 12)


Hilbert Space Gaussian Process Gaussian Measure Turbulence Theory Gaussian Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Cameron, R. H. and Martin, W. T., The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. Math. 48(1947).Google Scholar
  2. [2].
    Ciesielski, Z. Lectures on Brownian motion, heat conduction and potential theory, Math. Institute, Aarhus Univ. Denmark (1966).Google Scholar
  3. [3].
    Dudley, R. M., Gaussian processes on several parameters, Ann. Math. Statist., 36 (1965), 771–788.Google Scholar
  4. [4].
    Gelfand, I.M. and Vilenkin, N. Ya. Some applications of Harmonic Analysis, (Generalized Functions, vol. 4), Moscow, (1961).Google Scholar
  5. [5].
    Hida, T. and Ikeda, N., Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral, Proc. 5th Berkeley Symp. Vol. II, Part 1 (1965), 117–143.Google Scholar
  6. [6].
    Imamura, T., Meecham, W. C., and Siegel, A., Symbolic calculus of the Wiener process and Wiener-Hermite functionals, J. Math. Phy. 6, (1965), 695–706.CrossRefGoogle Scholar
  7. [7].
    Ito, K., Multiple Wiener integral, J. Math. Soc. Japan, 3 (1951), 157–169.Google Scholar
  8. [8].
    —, Isotropic random current, Proc. 3rd Berkeley Symp. Vol. II, (1956), 125–132.Google Scholar
  9. [9].
    Kakutani, S., Spectral analysis of stationary Gaussian processes, Proc. 4th Berkeley Symp. Vol. 2 (1961), 239–247.Google Scholar
  10. [10].
    Kallianpur, G., The role of reproducing kernel Hilbert spaces in the study of Gaussian processes, Advances in Probability Vol. 2, (ed. P. Ney) M. Dekker (1970), 51–83.Google Scholar
  11. [11].
    Kallianpur, G. and Nadkarni, M. G., Supports of Gaussian measures, Proc. 6th Berkeley Symp. (1970) (To appear).Google Scholar
  12. [12].
    Krein, M. G., Hermitian-positive kernels on homogeneous spaces, I. Amer. Math. Soc. Trans., Ser. 2, Vol. 34 (1963), 69–108.Google Scholar
  13. [13].
    LePage, R., An isometry related to unbiased estimation, Chapter 5, Thesis, Univ. of Minnesota (1964).Google Scholar
  14. [14].
    Lévy, P., Processus Stochastiques et Mouvement Brownien. (Monographies des Probabilités, Fasc. 6) Gauthier-Villars, Paris (1948).Google Scholar
  15. [15].
    Molchan, G. M., On some problems concerning Brownian motion in Lévy's sense, Theory of Prob. and its Appl. (English Trans.) 12, (1967), 682–690.Google Scholar
  16. [16].
    Neveu, J., Processus aleatoires Gaussiens, Séminaire de mathematiques superieures, U. of Montreal (1968).Google Scholar
  17. [17].
    Schwartz, L. Théorie des Distributions, Hermann, Paris, (1957 and 1959).Google Scholar
  18. [18].
    Treves, F., Topological vector spaces, distributions and kernels, Academic Press, New York and London (1967).Google Scholar
  19. [19].
    Wiener, N., Nonlinear problems in random theory, The M.I.T. Press, Cambridge, (1958).Google Scholar
  20. [20].
    Yaglom, A. M., Some classes of random fields in n-dimensional space related to random processes, Theory of Prob. and its Appl. (English Trans.), 2, (1957), 273–319.Google Scholar
  21. [21].
    Yosida, K., Functional Analysis, Springer-Verlag, (1965).Google Scholar
  22. [22].
    Zimmerman, G. J., Some sample function properties of the two-parameter Gaussian process, (to appear) (1971).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • G. Kallianpur
    • 1
  1. 1.University of Minnesota

Personalised recommendations