Advertisement

Neutron scattering and normal vibrations of polymers

  • T. Kitagawa
  • T. Miyazawa
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 9)

Keywords

Neutron Scattering Raman Line Normal Vibration Neutron Inelastic Scattering Dynamical Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, Y., Chiba, A., Kaneko, M.: The x-ray study of the molecular motion in polyethylene crystal. I. J. Phys. Soc. Japan 27, 1579–1583 (1969).Google Scholar
  2. Bank, M.I., Krimm, S.: Lattice-frequency studies of crystalline and fold structure in polyethylene. J. Appl. Phys. 39, 4951–4958 (1968).Google Scholar
  3. Bertie, J.E., Whalley, E.: Infrared-active interchain vibration in polyethylene. J. Chem. Phys. 41, 575–576 (1964).Google Scholar
  4. Boerio, F.J., Koenig, J.L.: Raman scattering in crystalline polyethylene. J. Chem. Phys. 52, 3425–3431 (1970).Google Scholar
  5. Born, M., Huang, K.: Dynamical Theory of Crystal Lattice. Oxford: Clarendon Press 1954.Google Scholar
  6. Bouckaert, L.P., Smoluchowski, R., Wigner, E.: Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58–67 (1936).Google Scholar
  7. Boutin, H., Prask, H., Trevino, S.F., Danner, H.R.: Study of the low frequency molecular motions in polyethylene and the n-paraffins by slow neutron inelastic scattering. In: Proceedings of Symposium on Inelastic Scattering of Neutrons, Bombay, Dec. 1964, Vol. 2, IAEA, Vienna, pp. 407–419 (1965).Google Scholar
  8. — Yip, S.: Molecular Spectroscopy with Neutrons. Cambridge (Mass.): M.I.T. Press 1968.Google Scholar
  9. Breit, G.: The scattering of slow neutrons by bound protons. I. Method of calculation. Phys. Rev. 71, 215–231 (1947).Google Scholar
  10. — Wigner, E.: Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936).Google Scholar
  11. Brockhouse, B.N.: Methods for neutron spectroscopy. In: Proceedings of Symposium on Inelastic Scattering of Neutrons. IAEA, Vienna, pp. 113–151 (1961).Google Scholar
  12. Brugger, R.M.: Mechanical and time-of-flight techniques. In: Egelstaff, P.A. (Ed.): Thermal Neutron Scattering, pp. 53–96. New York: Academic Press 1965.Google Scholar
  13. Bunn, C.W.: The crystal structure of long-chain normal paraffin hydrocarbons. The shape of the CH2 group. Trans. Faraday Soc. 35, 482–491 (1939).Google Scholar
  14. Carter, V.B.: Polarized Raman spectra of oriented polyethylene. J. Mol. Spectry. 34, 356–357 (1970).Google Scholar
  15. Chang, Y.I., Summerfield, G.C.: Observation of optical modes in polyethylene by neutron scattering. J. Polymer Sci. Part A-2, 7, 405–410 (1969).Google Scholar
  16. Cocking, S.J., Webb, F.J.: Neutron sources and detectors. In: Egelstaff, P.A. (Ed.): Thermal Neutron Scattering, pp. 141–192. New York: Academic Press 1965.Google Scholar
  17. Danner, H.R., Safford, G.J., Boutin, H., Berger, M.: Study of low-frequency motions in polyethylene and the paraffin hydrocarbons by neutron inelastic scattering. J. Chem. Phys. 40, 1417–1425 (1964).Google Scholar
  18. Dean, G.D., Martin, D.H.: Intermolecular vibrations of crystalline polyethylene and long-chain paraffins. Chem. Phys. Letters 1, 415–416 (1967).Google Scholar
  19. Feldkamp, L.A., Venkataraman, G., King, J.S.: Dispersion relation for skeletal vibrations in deuterated polyethylene. In Proceedings of Symposium on Neutron Inelastic Scattering, Copenhagen, May 1968, IAEA, Vienna, Vol. 2, pp. 159–165 (1968).Google Scholar
  20. Fermi, E.: Motion of neutrons in hydrogeneous substances. Ricerca Sci. 7, II 13–52 (1936).Google Scholar
  21. Feshbach, H., Peaslee, D.C., Weisskopf, V.F.: On the scattering and absorption of particles by atomic nuclei. Phys. Rev. 71, 145–158 (1947).Google Scholar
  22. Gupta, V.D., Trevino, S., Boutin, H.: Vibration spectra of polyglycine. J. Chem. Phys. 48, 3008–3015 (1968).Google Scholar
  23. Hendra, P.J.: The B2g methylene wagging mode in polyethylene. J. Mol. Spectry. 28, 118–119 (1968).Google Scholar
  24. Henry, A.W., Safford, G.J.: Study of low frequency molecular motions in polydimethylsiloxane polymers by neutron inelastic scattering. J. Polymer Sci. Part A-2, 7, 433–462 (1969).Google Scholar
  25. Herzberg, G.: Infrared and Raman Spectra of Polyatomic Molecules. Princeton (N.J.): D. van Nostrand Co. 1945.Google Scholar
  26. Higgs, P.: The vibration spectra of helical molecules; infrared and Raman selections rules, intensities and approximate frequencies. Proc. Roy. Soc. (London) A 220, 472–485 (1953).Google Scholar
  27. Iyengar, P.K.: Crystal diffraction techniques. In: Egelstaff, P.A. (Ed.): Thermal Neutron Scattering, pp. 97–140. New York: Academic Press 1965.Google Scholar
  28. Kajiura, T., Muraishi, S.: Laser Raman spectra of polymer materials. Nippon Kagaku Zasshi 89, 1187–1191 (1968).Google Scholar
  29. Kitagawa, T.: Crystal Dynamics and Related Solid State Properties of Polymers. Ph. D. Dissertation, Osaka Univ. (1968).Google Scholar
  30. — Miyazawa, T.: Frequency distribution of crystal vibrations and specific heat of polyethylene. Rept. Progr. Polymer. Phys. Japan 8, 53–56 (1965).Google Scholar
  31. — — Inelastic scattering cross section of neutron by crystal vibration of polyethylene. J. Chem. Phys. 47, 337–338 (1967a).Google Scholar
  32. — — Inelastic scattering cross section of neutron by crystal vibrations of polyethylene. Rept. Progr. Polymer Phys. Japan 10, 185–186 (1967b).Google Scholar
  33. — — Interchain potential, frequency spectrum, specific heat and root-mean-squared displacements in polyethylene crystal. Rept. Progr. Polymer Phys. Japan 11, 219–222 (1968a).Google Scholar
  34. — — Cross-section for multi-phonon scattering of neutrons by crystalline polyethylene. J. Polymer Sci., Part B, 6, 83–86 (1968a).Google Scholar
  35. — — Group theoretical treatment of crystal vibrations; application to orthorhombic polyethylene. Bull. Chem. Soc. Japan 42, 3437–3447 (1969).Google Scholar
  36. — — Frequency distribution, sprcific heat, and Young's moduli of orthorhombic polyethylene with skeletal approximation. Bull. Chem. Soc. Japan 43, 372–379 (1970a).Google Scholar
  37. — — Frequency distribution and dispersion curves of crystal vibrations of perdeuterated polyethylene. Polymer J. 1, 471–479 (1970b).Google Scholar
  38. Kothari, L.S., Singwi, K.S.: Interaction of thermal neutrons with solids. Solid State Phys. 8, 109–190 (1959).Google Scholar
  39. Kovalev, O.V.: Irreducible Representations of the Space Groups. (originally published in Russian in 1958 and later translated into English by Gross, A. M.). New York: Gordon and Breach Ltd. 1965.Google Scholar
  40. Krimm, S., Bank, M.I.: Assignment of the 71 cm−1 band in polyethylene. J. Chem. Phys. 42, 4059–4060 (1965).Google Scholar
  41. —, Liang, C.Y., Sutherland, G.B.B.M.: Infrared spectra of high polymers. II. Polyethylene. J. Chem. Phys. 25, 549–562 (1956).Google Scholar
  42. Liang, C. Y., Krimm, S.: Infrared spectra of high polymers. III. Polytetrafluoroethylene and polychlorotrifluoroethylene. J. Chem. Phys. 25, 563–571 (1956).Google Scholar
  43. Lin, T. P., Koenig, J. L.: A method for the complete vibrational analysis of the isolated polyethylene chain. J. Mol. Spectry. 9, 228–243 (1963).Google Scholar
  44. Lynch, J. E. Jr., Summerfield, G. C., Feldkamp, L. A., King, J.S.: Neutron scattering in normal and deuterated polyethylene. J. Chem. Phys. 48, 912–917 (1968).Google Scholar
  45. Maradudin, A.A., Vosko, S.H.: Symmetry properties of the normal vibrations of a crystal. Rev. Mod. Phys. 40, 1–37 (1968).Google Scholar
  46. Matsui, Y., Kubota, T., Tadokoro, H., Yoshihara, T.: Raman spectra of polyethers. J. Polymer Sci. A 3, 2275–2288 (1965).Google Scholar
  47. Matsuura, H., Miyazawa, T.: Intrachain force field and normal vibrations of polyethylene glycol. Bull. Chem. Soc. Japan 41, 1798–1808 (1968).Google Scholar
  48. — — Optical and acoustic branches and frequency distribution of polyethylene glycol chain. Bull. Chem. Soc. Japan 42, 372–378 (1969a).Google Scholar
  49. — — Frequency distribution and neutron scattering of polyethylene glycol chain. J. Chem. Phys. 50, 915–919 (1969b).Google Scholar
  50. — — Young's modulus of poly(ethylene glycol). J. Polymer Sci., Part B, 7, 65–66 (1969c).Google Scholar
  51. Miyazawa, T.: Molecular vibrations and structures of high polymers. I. General method of normal coordinate treatments by internal coordinates and infrared frequencies and conformations of (-CH2-)n, (-CH2-O-)n, and (-CH2-O-CH2-)n. J. Chem. Phys. 35, 693–713 (1961).Google Scholar
  52. — Elastic constant and intramolecular potential of helical polymer chains. Rept. Progr. Polymer Phys. Japan 8, 47–48 (1965).Google Scholar
  53. — Vibrational spectra of polymer chains. Nippon Kagaku Zasshi 88, 111–124 (1967).Google Scholar
  54. — Fukushima, K., Ideguchi, Y.: Molecular vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol. J. Chem. Phys. 12, 2764–2776 (1962).Google Scholar
  55. — Ideguchi, Y., Fukushima, K.: Molecular vibration and structure of high polymers. IV. A general method of treating degenerate normal vibrations of helical polymers and infrared-active vibrations of isotactic polypropylene. J. Chem. Phys. 38, 2709–2720 (1963).Google Scholar
  56. Mizushima, S., Shimanouchi, T.: Raman frequencies of n-paraffin molecules. J. Am. Chem. Soc. 71, 1320–1324 (1949).Google Scholar
  57. Moore, W. E., Kirouac, G.J., Trevino, S.F.: Neutron energy-loss scattering from stretch oriented polyethylene. (private communication) (1969).Google Scholar
  58. Myers, W., Donovan, J.L., King, J.S.: Polyethylene frequency spectrum from warm-neutron scattering. J. Chem. Phys. 42, 4299–4300 (1965).Google Scholar
  59. — Randolph, P. D.: Low-frequency vibrations in polyethylene at 300°, 77° and 4.2° K. J. Chem. Phys. 49, 1043–1054 (1968).Google Scholar
  60. — Summerfield, G.C., King, J.S.: Neutron scattering in stretch-oriented polyethylene. J. Chem. Phys. 44, 184–187 (1966).Google Scholar
  61. Nielsen, J.R., Woollett, A.H.: Vibrational spectra of polyethylene and related substances. J. Chem. Phys. 26, 1391–1400 (1957).Google Scholar
  62. — Holland, R.F.: The B2g methylene wagging and twisting fundamentals in crystalline polyethylene. J. Mol. Spectry. 4, 488–498 (1960).Google Scholar
  63. — — Dichroism and interpretation of the infrared bands of oriented crystalline polyethylene. J. Mol. Spectry. 6, 394–418 (1961).Google Scholar
  64. Odajima, A., Maeda, T.: Calculation of the elastic constants and the lattice energy of the polyethylene crystal. J. Polymer Sci. C 15, 55–74 (1966).Google Scholar
  65. Piseri, L., Zerbi, G.: Dispersion curves and frequency distribution of polymers: single chain model. J. Chem. Phys. 48, 3561–3572 (1968).Google Scholar
  66. Rush, J.J.: Cold-neutron study of hindered rotations in solid and liquid methylchloroform, neopentane, and ethane. J. Chem. Phys. 46, 2285–2291 (1967).Google Scholar
  67. Safford, G.J., Danner, H.R., Boutin, H., Berger, M.: Investigation of the lowfrequency motions in isotactic and atactic polypropylene by neutron inelastic scattering. J. Chem. Phys. 40, 1426–1432 (1964).Google Scholar
  68. — LoSacco, F.J.: Study of low-frequency motions in nylon-6. J. Chem. Phys. 43, 3404–3405 (1965).Google Scholar
  69. — Naumann, A.W.: Low frequency motions in polymers as measured by neutron inelastic scattering. Adv. Polymer Sci. 5, 1–27 (1967).Google Scholar
  70. — — Simon, F.T.: Neutron scattering study of the intramolecular and crystalline modes of polyethylene. J. Chem. Phys. 45, 3787–3794 (1966).Google Scholar
  71. Sakurada, I., Ito, T., Nakamae, K.: Elastic moduli of the crystal lattices of polymers. J. Polymer Sci. C 15, 75–91 (1966).Google Scholar
  72. — Kaji, K., Nakamae, K., Shikata, E.: Temperature effects on the elastic moduli of the polyethylene crystal in the direction perpendicular to the chain axis. Symposium on Macromolecules, 22 F 09, pp. 989–994, Matsuyama (1968).Google Scholar
  73. Schachtschneider, J.H., Snyder, R.G.: Vibrational analysis of the n-paraffins. II. Normal coordinate calculations. Spectrochim. Acta 19, 117–168 (1963).Google Scholar
  74. Schaufele, R.F.: Advances in vibrational Raman scattering spectroscopy of polymers. Trans. N. Y. Acad. Sci. 30, 69–80 (1967).Google Scholar
  75. — Shimanouchi, T.: Longitudinal acoustic vibrations of finite polyethylene chains. J. Chem. Phys. 47, 3605–3610 (1967).Google Scholar
  76. Shearer, H.M.M., Vand, V.: The crystal structure of the monoclinic form of n-hexatriacontane. Acta Cryst. 9, 379–384 (1956).Google Scholar
  77. Shimanouchi, T., Asahina, M., Enomoto, S.: Elastic moduli of oriented polymers. I. The simple helix, polyethylene, polytetrafluoroethylene, and a general formula. J. Polymer Sci. 59, 93–100 (1962).Google Scholar
  78. Shiro, Y.: The force fields and elastic constants of crystals. I. A general treatment of the calculation of the elastic constants from the force constants. J. Sci. Hiroshima Univ., Ser. A-II, 32, 59–68 (1968).Google Scholar
  79. — Miyazawa, T.: A general matrix method for treating elastic constants of molecular crystals; application to orthorhombic polyethylene. Bull. Chem. Soc. Japan 44, 2371–2378 (1971).Google Scholar
  80. Shull, C.G., Wollan, E.O.: Application of neutron diffraction to solid state problems. Solid State Phys. 2, 137–217 (1956).Google Scholar
  81. Slater, J.C.: Quantum Theory of Molecules and Solids, Vol. 2. New York: McGraw Hill 1965.Google Scholar
  82. Smith, A. E.: The crystal structure of the normal paraffin hydrocarbons. J. Chem. Phys. 21, 2229–2231 (1953).Google Scholar
  83. Snyder, R.G.: Vibrational spectra of crystalline n-paraffins. Part I. Methylene rocking and wagging modes. J. Mol. Spectry. 4, 411–434 (1960).Google Scholar
  84. — Vibrational spectra of crystalline n-paraffins. Part II. Intermolecular effects. J. Mol. Spectry. 7, 116–144 (1961).Google Scholar
  85. — A revised assignment of the B2g methylene wagging fundamental of the planar polyethylene chain. J. Mol. Spectry. 23, 224–228 (1967).Google Scholar
  86. — Raman spectrum of polyethylene and the assignment of the B2g wagging fundamental. J. Mol. Spectry. 31, 464–465 (1969).Google Scholar
  87. Strong, K. A., Brugger, R. M.: Measurement of the frequency of torsional vibration in the ethane molecule. J. Chem. Phys. 47, 421–429 (1967).Google Scholar
  88. Sugeta, H.: Vibrational Spectra and Molecular Structures of Polyoxymethylene and Related Molecules. Ph. D. Dissertation, Osaka Univ. (1969).Google Scholar
  89. — Miyazawa, T.: Frequency distribution and elastic constant of polyoxymethylene chain. Rept. Progr. Polymer Phys. Japan 9, 177–178 (1966).Google Scholar
  90. — — Treatment of the normal vibrations of helical polymers; methods for factoring the B matrix and for calculating atomic displacements. J. Chem. Phys. 47, 2034–2039 (1967).Google Scholar
  91. — — A general method for calculating elastic moduli of helical polymer chains in crystals; application to poly(oxymethylene). Polymer J. 1, 226–231 (1970).Google Scholar
  92. — — Kajiura, T.: Laser Raman scattering of polyoxymethylene. J. Polymer Sci., Part B, 7, 251–253 (1969).Google Scholar
  93. Summerfield, G.C.: Determination of the phonon spectrum of polyethylene by neutron scattering. J. Chem. Phys. 43, 1079–1080 (1965).Google Scholar
  94. Swan, P.R.: Polyethylene unit cell variations with temperature. J. Polymer Sci. 56, 403–407 (1962).Google Scholar
  95. Tadokoro, H.: Normal vibrations of the polymer molecules of helical configuration. J. Chem. Phys. 33, 1558–1567 (1960).Google Scholar
  96. — Chatani, Y., Yoshihara, T., Tahara, S., Murahashi, S.: Structural studies on polyethers, [-(CH2)m-O-]n. II. Molecular structure of polyethylene oxide. Macromol. Chem. 73, 109–127 (1964).Google Scholar
  97. — Kobayashi, M., Kawaguchi, Y., Kobayashi, A., Murahashi, S.: Normal vibrations of the polymer molecules of helical configuration. III. Polyoxymethylene and polyoxymethylene-d2. J. Chem. Phys. 38, 703–725 (1963).Google Scholar
  98. — — Ukita, M., Yasufuku, K., Murahashi, S., Torii, T.: Normal vibrations of the polymer molecules of helical conformation. V. Isotactic polypropylene and its deutero-derivatives. J. Chem. Phys. 42, 1432–1449 (1965).Google Scholar
  99. — Yasumoto, T., Murahashi, S., Nittal, I.: Molecular configuration of polyoxymethylene. J. Polymer Sci. 44, 266–269 (1960).Google Scholar
  100. Tasumi, M., Krimm, S.: Crystal vibrations of polyethylene. J. Chem. Phys. 46, 755–766 (1967).Google Scholar
  101. — Shimanouchi, T.: Crystal vibrations and intermolecular forces of polymethylene crystals. J. Chem. Phys. 43, 1245–1258 (1965).Google Scholar
  102. — — Miyazawa, T.: Normal vibrations and force constants of polymethylene chain. J. Mol. Spectry. 9, 261–287 (1962).Google Scholar
  103. — — — A refined treatment of normal vibrations of polymethylene chain. J. Mol. Spectry. 11, 422–432 (1963).Google Scholar
  104. Teare, P.W.: The crystal structure of orthorhombic hexatriacontane C36H74. Acta Cryst. 12, 294–300 (1959).Google Scholar
  105. Trevino, S.F.: Neutron scattering from oriented polyethylene. J. Chem. Phys. 45, 757–759 (1966).Google Scholar
  106. — Boutin, H.: Low-energy vibrational modes of polyoxymethylene by neutron scattering. J. Chem. Phys. 45, 2700–2702 (1966).Google Scholar
  107. — — Studies of low-frequency molecular motions in polymers by neutron inelastic scattering. J. Macromol. Sci. (Chem.) A 1, 723–746 (1967).Google Scholar
  108. Tucker, J.E., Reese, W.: Heat capacity of polyethylene from 2.5° to 30° K. J. Chem. Phys. 46, 1388–1397 (1967).Google Scholar
  109. Van Hove, L.: Correlation in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954).Google Scholar
  110. Weinstock, R.: Inelastic scattering of slow neutrons. Phys. Rev. 65, 1–20 (1944).Google Scholar
  111. Whittemore, W.L.: An investigation of the polypeptide, poly-L-glutamic acid, using neutron inelastic scattering. In Proceedings of Symposium on Neutron Inelastic Scattering, Copenhagen, May 1968, IAEA, Vienna, Vol. 2, pp. 175–184 (1968).Google Scholar
  112. Wilson, E.B., Jr.: A method of obtaining the expanded secular equation for the vibration frequencies of a molecule. J. Chem. Phys. 7, 1047–1052 (1939).Google Scholar
  113. Wunderlich, B.: Motion in polyethylene. I. Temperature and crystallinity dependence of the specific heat. J. Chem. Phys. 37, 1203–1207 (1962a).Google Scholar
  114. — Motion in polyethylene. II. Vibrations in crystalline polyethylene. J. Chem. Phys. 37, 1207–1216 (1962b).Google Scholar
  115. — Baur, H.: Heat capacities of linear high polymers. Adv. Polymer Sci. 7, 151–368 (1970).Google Scholar
  116. Zemach, A.C., Glauber, R.J.: Dynamics of neutron scattering by molecules. Phys. Rev. 101, 118–129 (1956).Google Scholar
  117. Zerbi, G., Hendra, P.J.: Laser-excited Raman spectra of polymers; hexagonal and orthorhombic polyoxymethylene. J. Mol. Spectry. 27, 17–26 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • T. Kitagawa
    • 1
  • T. Miyazawa
    • 1
  1. 1.Institute for Protein ResearchOsaka University, Kita-kuOsakaJapan

Personalised recommendations