Advertisement

Study of vortex flows at high swirl by an integral method using exponentials

  • Hartmut H. Bossel
Session VI Navier-Stokes Equations Fully Viscous Flows
Part of the Lecture Notes in Physics book series (LNP, volume 8)

Abstract

Rotationally symmetric quasi-cylindrical viscous incompressible vortex flows have been computed with different initial profiles and for a wide variety of swirl parameters and external axial velocity and circulation gradients. The computational method uses exponentials in the approximating functions for axial velocity and circulation profiles and for weighting functions. Several singular values of the swirl parameter S are identified, the most important being S and S which divide stable from stagnating, and supercritical from subcritical vortex flow, respectively.

Keywords

Axial Velocity Vortex Flow Vortex Breakdown Leading Edge Vortex Initial Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Hall, M. G., in Progress in Aeronautical Sciences, D. Küchemann, Ed. (Pergamon Press, Ltd., Oxford, 1966), Vol. 7, p. 53.Google Scholar
  2. (2).
    Gartshore, I. S., Nat. Res. Council, Canada, Rept. LR-378 (1963).Google Scholar
  3. (3).
    Hall, M. G., RAE(Farnborough) Tech. Rept. 65106 (1965).Google Scholar
  4. (4).
    Mager, A., AIAA Paper 70–51 (1970).Google Scholar
  5. (5).
    Bossel, H. H., Univ. Calif. Berkeley, Eng. Rept. AS–67–14 (1967).Google Scholar
  6. (6).
    Bossel, H. H., J. Computational Physics 5, 359 (1970).Google Scholar
  7. (7).
    Bossel, H. H., Physics of Fluids 12, 498 (1969).Google Scholar
  8. (8).
    Bossel, H. H., AIAA J. 6, 1192 (1968).Google Scholar
  9. (9).
    Benjamin, T. B., J. Fluid Mech. 28, 65 (1967).Google Scholar
  10. (10).
    Donaldson, C. duP., and Sullivan, R. D., Proc. Heat Transfer and Fluid Mechanics Institute 16 (1960).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Hartmut H. Bossel
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations