Computational aspects of the turbulence problem

  • Alexandre J. Chorin
Session V 1. Shock Waves 2. Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 8)


Burger Equation Vortex Line Vortex Formation Jump Discontinuity Inertial Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press, (1960).Google Scholar
  2. [2]
    Chorin, A. J., Math. Comp., 23, 341, (1969).Google Scholar
  3. [3]
    Chorin, A. J., Inertial Range Flow and Turbulent Cascades. to appear, also AEC Report NYO-1480-135 (1969).Google Scholar
  4. [4]
    Ebin, D. G. and Marsden, E., to appear, Arch. Rat. Mech. Anal.Google Scholar
  5. [5]
    Hopf, E., Comm. Pure Appl. Math. 3, 201 (1950).Google Scholar
  6. [6]
    Jain, P., Math. Research Center Report 751, Madison, Wisc. (1967).Google Scholar
  7. [7]
    Leith, C. E., Proc. WMO/IUGG Symp. Num. Weather Prediction, Tokyo (1969).Google Scholar
  8. [8]
    Lighthill, M. J., Fourier Analysis and Generalized Functions, Cambridge University Press (1959).Google Scholar
  9. [9]
    Orszag, S., to appear.Google Scholar
  10. [10]
    Saffman, P. G., in Topics in Nonlinear Physics, N. J. Zabuski (Ed.), Springer-Verlag, New York, (1968).Google Scholar
  11. [11]
    Smagorinski, J., Monthly Weather Review, 91, 257 (1960).Google Scholar
  12. [12]
    Taylor, G. I. and Green, A. E., Proc. Roy. Soc. A. 158, 499 (1937).Google Scholar
  13. [13]
    Zabuski, N. J. and Deem, G., to appear.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Alexandre J. Chorin
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York

Personalised recommendations