The reduction of the Stefan problem to tbe solution of an ordinary differential equation

  • René De Vogelaere
Session II Numerical Techniques and Applications
Part of the Lecture Notes in Physics book series (LNP, volume 8)


The solution of the Stefan problem is reduced to the solution of a differential equation of order n. Computational evidence allows the conjecture of convergence to the boundary curve and to the solution of the problem when n tends to infinity, for all values of the time variable. The method generalizes.


Ordinary Differential Equation Taylor Expansion Recurrence Relation Regular Solution Boundary Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Douglas, J., Proc. Amer. Math.Soc.,8, 402–408 (1957).Google Scholar
  2. [2]
    Douglas, J. and Gallie, J.M., Duke Math. J., 22, 557–571 (1955).Google Scholar
  3. [3]
    Evans, G.W., Quart. Appl. Math., 9, 185–193 (1951)Google Scholar
  4. [4]
    Evans, G.W., Isaacson, E. and MacDonald, J.K.L. Quart. Appl. Math., 8, 312–319 (1950)Google Scholar
  5. [5]
    Friedman, A., Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J., (1964)Google Scholar
  6. [6]
    Friedman, A., J. Math. and Mech., 9, 885–904 (1960).Google Scholar
  7. [7]
    Kamke, E., Differentialgleichungen lösungsmethoden und lösungen, Akad. Verlag, Leipzig (1943)Google Scholar
  8. [8]
    Osterby, 0., Thesis, Univ. of California, Berkeley.(In preparation)Google Scholar
  9. [9]
    Ruoff, A.L., Quart. Appl. Math., 16, 197–201 (1958)Google Scholar
  10. [10]
    Sestini, G., Annali Mat. Pura Appl., 56, 193–207 (1961)Google Scholar
  11. [11]
    Stefan, J., Sitzungsberichte Akad. der Wiss. Math.-Natuurw. Vienna., 98, 965–983 (1889)Google Scholar
  12. [12]
    Trench, W.F., J. Soc. Indust. Appl. Math., 7, 184–204 (1959).Google Scholar
  13. [13]
    Wragg, A. Comp. J., 9, 106–109 (1966)Google Scholar
  14. [14]
    Zonneveld, J.A., Mathematical Center Tracts, Math. Centrum, Amsterdam, 8, 1–110 (1964).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • René De Vogelaere
    • 1
  1. 1.Department of Mathematics and Computer CenterUniversity of CaliforniaBerkeleyUSA

Personalised recommendations