Advertisement

Lie algebras of local currents and their representations

  • G. A. Goldin
  • D. H. Sharp
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 6)

Keywords

Commutation Relation Local Current Current Algebra Electromagnetic Current Axial Vector Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dashen, R. F., and Sharp, D. H., Phys. Rev., 165, 1857 (1968).Google Scholar
  2. [2]
    Sharp, D. H., Phys. Rev., 165, 1867 (1968).Google Scholar
  3. [3]
    Callan, C. G., Dashen, R. F., and Sharp, D. H., Phys. Rev., 165, 1883 (1968).Google Scholar
  4. [4]
    Sugawara, H., Phys. Rev., 170, 1659 (1968).Google Scholar
  5. [5]
    The presentation of the material in the first half of this section follows S. L. Adler and R. F. Dashen, Chapter I in Current Algebras, Benjamin, N. Y., (1968). For further background material one can consult other chapters in the Adler-Dashen book as well as B. Renner, Current Algebras and Their Applications, Pergamon, N. Y., (1968), and the lectures of L. Michel and L. O'Raifeartaigh in these Proceedings.Google Scholar
  6. [6]
    Gell-Mann, M., Phys. Rev., 125, 1067 (1962).Google Scholar
  7. [7]
    Gell-Mann, M., Physics, 1, 63 (1964.Google Scholar
  8. [8]
    Adler, S. L., Phys. Rev. Letters, 14, 1051 (1965).Google Scholar
  9. [9]
    Weisberger, W. I., Phys. Rev. Letters, 14, 1047 (1965).Google Scholar
  10. [10]
    Todorov, I. T., lectures on quantum field theory. (Not reproduced here)Google Scholar
  11. [11]
    For reviews of axiomatic field theory see: R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and AN That, Benjamin, N. Y., (1964), and R. Jost, The General Theory of Quantized Fields, American Mathematical Society (1963).Google Scholar
  12. [12]
    Goldin, G., Ph.D. Thesis, Pinceton University (1968), unpublished.Google Scholar
  13. [13]
    Goldin, G., “Non-Relativistic Current Algebras as Unitary Representations of Groups”, J. Math. Phys., (to be published).Google Scholar
  14. [14]
    Grodnik, J., and Sharp, D. H., “Representations of Local Non-Relativistic Currents”Phys. Rev., (to be published).Google Scholar
  15. [15]
    Grodnik, J., and Sharp, D. H., “Description of Spin and Statistics in NonRelativistic Quantum Theories Based on Local Currents”, Phys. Rev., (to be published).Google Scholar
  16. [16]
    Grodnik, J., Ph.D. Thesis submitted to the University of Pennsylvania (1969), (unpublished).Google Scholar
  17. [17]
    Gel'Fand, I., and Vilenkin, N., “Applications of Harmonic Analysis”, Vol. 4 in Genera. Fun., Academic Press, N. Y. (1964).Google Scholar
  18. [18]
    Mackey, G., Ann. Math., 55, 101 (1952).Google Scholar
  19. [19]
    Goldin, G., Grodnik, J., Powers, R. T., and Sharp, D. H., “Non-Relativistic Current Algebra in the N/V Limit”, (to be published).Google Scholar
  20. [20]
    Dicke, A., and Goldin, G., (to be published).Google Scholar
  21. [21]
    Grodnik, J., and Sharp, D. H., (to be published).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. A. Goldin
  • D. H. Sharp
    • 1
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphia

Personalised recommendations