Tensor operators for the group SL(2,C)

  • W. Rühl
Part of the Lecture Notes in Physics book series (LNP, volume 6)


Form Factor Invariant Subspace Vertex Function Principal Series Unitary Irreducible Representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gel'fand, I. M., Graev, M. I., and Vilenkin, N. Ya., Generalized Functions, Vol. 5: “Integral Geometry and Representation Theory”, New York (1966). Naimark, M. A., Linear Representations of the Lorentz Group, London (1964).Google Scholar
  2. [2]
    Gel'fand, I. M., and Shilov, G. E., Generalized Functions, Vol. 2: “Spaces of Fundamental and Generalized Functions”, New York (1968).Google Scholar
  3. [3]
    Naimark, M. A., Amer. Math. Soc. Transl. Ser. 2, 36, 101 (1964).Google Scholar
  4. [4]
    Gel'fand, I. M., and Yaglom, A. M., Zhur. Eksper. i Teor. Fiz., 18, 703 (1948).Google Scholar
  5. [5]
    Wess, J., Lectures in Theoretical Physics, Vol. 10B, edited by A. O. Barut and W. E. Brittin, New York (1968), p. 325.Google Scholar
  6. [6]
    Rühl, W., Nuovo Cimento, 63A, 1131, 1163 (1969), and CERN preprint, TH 1125.Google Scholar
  7. [7]
    Källén, G., Elementary Particle Physics, Reading, Mass. (1964).Google Scholar
  8. [8]
    Barut, A. O., and Kleinert, H., Phys. Rev., 161, 1464 (1967).Google Scholar
  9. [9]
    Rühl, W., Nucl. Phys., Bll, 505 (1969) and, with J. Kupsch, Nuovo Cimento, 64A, 991 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • W. Rühl
    • 1
  1. 1.European Organization for Nuclear ResearchGenevaSwitzerland

Personalised recommendations