Advertisement

Derivation and solution of an infinite-component wave equation for the relativistic Coulomb problem

  • I. T. Todorov
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 6)

Keywords

Unitary Representation Feynman Rule Discrete Series Feynman Graph Conformal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Itzykson, C., Kadyshevsky, V. G., and Todorov, I. T., Three Dimensional Formulation of the Relativistic Two-Body Problem and Infinite Component Wave Equations, Institute for Advanced Study, Princeton, preprint (1969) and Phys. Rev. (to be published).Google Scholar
  2. [2]
    Itzykson, C., and Todorov, I. T., “An Algebraic Approach to the Relativistic Two-Body Problem” in Proceedings of the Coral Gables Conference on Fundamental Interactions on High Energy, T. Gudehus et al. editors, Gordon and Breach, New York (1969).Google Scholar
  3. [3]
    Todorov, I. T., “On the Three Dimensional Formulation of the Relativistic Two-Body Problem”, Lectures Presented at the Theoretical Physics Institute, University of Colorado, Boulder (1969).Google Scholar
  4. [4]
    Kadyshevsky, V. G., “Relativistic Equations for the S-Matrix in the p-Representation”, I "Unitarity and Causality Conditions”; II, Soviet Phys. JETP, 19, 443, 597 (1964).Google Scholar
  5. [5]
    Nakanishi, N., “A General Survey of the Theory of the Bethe-Salpeter Equation”, Prog. Theor. Phys. Suppl., No. 43, 1 (1969).Google Scholar
  6. [6]
    Wick, G. C., “Properties of the Bethe-Salpeter Wave Functions”, Phys. Rev., 96, 1124 (1954).Google Scholar
  7. [6] a)
    Cutkosky, R. E., “Solutions of a Bethe-Salpeter Equation”, Phys. Rev., 96, 1135 (1954).Google Scholar
  8. [7]
    Kadyshevsky, V. G., “Quasi-potential Equation for the Relativistic Scattering Amplitude”, Nucl. Phys., 136, 125 (1968).Google Scholar
  9. [7] a)
    Kadyshevsky, V. G., and Mateev, M. D., “On a Relativistic Quasi-potential Equation in the Case of Particles with Spin”, Nuovo Cimento, 55A, 233 (1968).Google Scholar
  10. [8]
    Faustov, R. N., and Helashvili, A. A., “Normalization Condition for Simultaneous Wave Function of the Bound State of Two Particles”, JINR, Dubna, preprint P2-4345 (1969).Google Scholar
  11. [9]
    Logunov, A. A., and Tavkhelidze, A. N., “Quasi-optical Approach in Quantum Field Theory”, Nuovo Cimento, 29, 380 (1963).Google Scholar
  12. [9] a)
    Logunov, A. A., Tavkhelidze, A. N., Todorov, I. T., and Khrustalev, O. A., “Quasi-potential Character of the Scattering Amplitude”, Nuovo Cimento, 30, 134 (1963).Google Scholar
  13. [10]
    Kyriakopoulos, E., “Dynamical Groups and the Bethe-Salpeter Equation”, Phys. Rev., 174, 1846 (1968).Google Scholar
  14. [11]
    Todorov, I. T., “Discrete Series of Hermitian Representations of the Lie Algebra of U(p,q)”, Int. Centre Theoret. Phys., Trieste, preprint IC/66/71 (1966).Google Scholar
  15. [12]
    Yao, Tsu, “Unitary Irreducible Representations of SU(2,2), I and II”, J. Math. Phys., 8, 1931 (1967) and 9, 1615 (1968).Google Scholar
  16. [13]
    Fronsdal, C., “Infinite Multiplets and the Hydrogen Atom”, Phys. Rev., 156, 1665 (1967).Google Scholar
  17. [14]
    Gel'fand, I. M., Graev, M. I., and Vilenkin, N. Ya., “Integral Geometry and Representation Theory” in Generalized Functions, Vol. 5, Academic Press, New York (1966). See also “Properties and Operations”, Appendix B to Vol. 1, Academic Press, New York (1964).Google Scholar
  18. [15]
    Nambu, Y., “Infinite-component Wave Equations with Hydrogen-like Mass Spectra”, Phys. Rev., 160, 1171 (1967).Google Scholar
  19. [16]
    Barut, A. O., and Kleinert, H., “Current Operators and Majorana Equation for the Hydrogen Atom from Dynamical Groups”, Phys. Rev., 157, 1180 (1967).Google Scholar
  20. [17]
    Bargmann, V., “Irreducible Unitary Representations of the Lorentz Group”, Annals of Math., 48, 568 (1947).Google Scholar
  21. [18]
    Mack, G., and Todorov, I. T., “Irreducibility of the Ladder Representations of U(2,2) When Restricted to Its Poincaré Subgroup”, J. Math. Phys., 10, 2078 (1969).Google Scholar
  22. [19]
    Itzykson, C., “Remarks on Boson Commutation Rules”, Commun. Math. Phys., 4, 92 (1967).Google Scholar
  23. [20]
    Bargmann, V., “Group Representations on Hilbert Spaces of Analytic Functions” in Lectures at the International Symposium on Analytic Methods in Mathematical Physics, Indiana University 1968, Gordon and Breach, New York (1970).Google Scholar
  24. [21]
    Weil, A., “Sur Certains Groupes d'Operateurs Unitaires”, Acta Math., 111, 143 (1964).Google Scholar
  25. [22]
    Mackey, G., “Some Remarks on Symplectic Automorphisms”, Proceedings Amer. Math. Soc., 16, 393 (1965).Google Scholar
  26. [23]
    Kurşunoglu, B., Modern Quantum Theory, W. H. Freeman and Co., San Francisco (1962), p. 257.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • I. T. Todorov
    • 1
  1. 1.Institute for Advanced StudyPrinceton

Personalised recommendations