Advertisement

Unitary representations of lie groups in quantum mechanics

  • L. O'Raifeartaigh
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 6)

Keywords

Unitary Representation Invariance Group Current Algebra Unitary Irreducible Representation Spin Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 1

  1. [1]
    E. Whittaker, Analytical Dynamics, Cambridge (1937). C. Lanczos, Variational Principles of Mechanics, Toronto Univ. Press (1962).Google Scholar
  2. [2]
    P. Dirac, Rev. Mod. Phys., 21, 392 (1949). T. Jordan, E. C. G. Sudarshan, ibid., 33, 515 (1961). M. Pauri, G. Prosperi, J. Math. Phys., 7, 366 (1966). M. Hamermesh, Group Theory, Addison-Wesley, Cambridge, Mass. (1962).Google Scholar

Chapter 2

  1. [1]
    N. Bohr, Constitution of Atoms and Molecules, Munksgaard, Copenhagen and Benjamin, New York (1963).Google Scholar
  2. [2]
    E. Wigner, Phys. Rev., 77, 711 (1950).Google Scholar
  3. [3]
    F. Rellich, Nachr. Akad. Wiss. Göttingen, 11A, 107 (1946). J. Dixmier, Comp. Math., 13, 263 (1958).Google Scholar
  4. [4]
    H. Weyl, Theory of Group Representations and Quantum Mechanics, Methuen, London (1931).Google Scholar
  5. [5]
    J. von Neumann, Math. Ann., 104, 570 (1931).Google Scholar
  6. [6]
    F. Riesz, B. Nagy, Functional Analysis, Blackie, London (1956).Google Scholar
  7. [7]
    A. Wightman, Proceedings Fifth Eastern Theoretical Conference, edited by D. Feldman, Benjamin, New York (1967).Google Scholar
  8. [8]
    M. Hamermesh, Ann. Phys., 9, 518 (1960). J. Levy-Leblond, J. Math. Phys., 4, 776 (1963). J. Voisin, ibid., 6, 1822 (1965).Google Scholar
  9. [9]
    E. Inönü, E. Wigner, Nuovo Cimento, 9, 705 (1952).Google Scholar

Chapter 3

  1. [1]
    E. Wigner, Group Theory, Academic Press, New York (1959), p. 233.Google Scholar
  2. [2]
    A list of papers is given in [3] below. See also J. Jauch, in Group Theory and its Applications, edited by E. Loebl, Academic Press, New York (1968), G. Ludwig, Grundlagen der Quanten Mechanik, Springer, Göttingen (1954), A. Messiah, Quantum Mechanics, Vol. II, North-Holland, Amsterdam (1962), L. O'Raifeartaigh and G. Rasche, Ann. Phys., 25, 155 (1963).Google Scholar
  3. [3]
    V. Bargmann, J. Math. Phys., 5, 862 (1964).Google Scholar
  4. [4]
    E. Condon, C. Shortley, Theory of Atomic Spectra, Cambridge (1935).Google Scholar
  5. [5]
    P. Kramer and M. Moshinsky, in Group Theory and its Applications, edited by E. Loebl, Academic Press, New York (1968).Google Scholar
  6. [6]
    The SO(4) symmetry of the H-atom was first analyzed by W. Pauli, Z. Physik, 36 (1926), V. Fock, ibid., 98, 145 (1935), V. Bargmann, ibid., 99, 576 (1936).Google Scholar
  7. [7]
    C. Fronsdal, Phys. Rev., 156, 1665 (1967). A. Barut, H. Kleinert, ibid., 160, 1149 (1967).Google Scholar

Chapter 4

  1. [1]
    C. Eckart, Rev. Mod. Phys., 2, 302 (1930). E. Wigner, Group Theory, Academic Press, New York (1959).Google Scholar
  2. [2]
    N. Akhiezer, I. Glazman, Theory of Linear Operators in Hilbert Space II, Ungar, New York (1963).Google Scholar
  3. [3]
    L. Cårding, Proc. Nat. Acad. Sci. U. S., 33, 331 (1947).Google Scholar
  4. [4]
    I. Segal, Duke Math. J., 18, 221 (1951).Google Scholar
  5. [5]
    E. Nelson, Lecture Notes, ETH, Zürich (1963).Google Scholar
  6. [6]
    P. Cartier, J. Dixmier, Amer. J. Math., 80, 131 (1958).Google Scholar
  7. [7]
    E. Nelson, Ann. of Math., 70, 572 (1959).Google Scholar
  8. [8]
    L. Gårding, Bull. Soc. Math. France, 88, 73 (1960).Google Scholar
  9. [9]
    Harish-Chandra, Proc. Nat. Acad. Sci. U. S., 37, 170 (1951).Google Scholar
  10. [10]
    R. Goodman, J. Functional Analysis, 3, 246 (1969).Google Scholar
  11. [11]
    R. Goodman, Trans. Amer. Math. Soc., (to appear).Google Scholar

Chapter 5

  1. [1]
    For more detailed information, see for example, E. Segré, Nuclei and Particles, Benjamin, New York (1964).Google Scholar
  2. [2]
    P. Dirac, Proc. Roy. Soc., 114A, 243 (1927). W. heisenberg, W. Pauli, Z. Physik, 56, 1 (1929), 59, 160 (1930).Google Scholar
  3. [3]
    For precise mathematical formulation, see R. Streater and A. Wightman, PCT, Statistics and All That, Benjamin, New York (1964) and R. Jost, The General Theory of Quantized Fields, Amer. Math. Soc., Providence, R. I. (1965).Google Scholar

Chapter 6

  1. [1]
    The lifting problem has been analyzed for general topological groups by V. Bargmann, Ann. of Math., 59, 1 (1954), D. Simms, Lecture Notes in Mathematics, Springer, Heidelberg (1968), K. Parthasarathy, ibid. (1969).Google Scholar
  2. [2]
    H. Bacry, J. Levy-Leblond, J. Math. Phys., 9, 1605 (1968).Google Scholar
  3. [3]
    E. Wigner, Ann. of Math., 40, 39 (1939). See also Y. Shirokov, JETP, 6, 919 (1958), H. Joos, Fortschr. Physik, 10, 65 (1962), A. Chakrabarti, J. Math. Phys., 7, 949 (1966). J. Lomont, H. Moses, ibid., 3, 405 (1962). N. Mukunda, ibid., 9, 532 (1968). H. Moses, ibid., 9, 16 (1968) and references therein.Google Scholar
  4. [4]
    G. Mackey, Induced Representations of Groups and Quantum Mechanics, Benjamin, New York (1968).Google Scholar
  5. [5]
    R. Newton, E. Wigner, Rev. Mod. Phys., 21, 400 (1949). A. Wightman, ibid., 34, 845 (1962).Google Scholar
  6. [6]
    B. Schroer, Fortschr. Physik, 2, 1 (1963). I. Segal, Proc. Nat. Acad. Sci. U. S. A., 57, 194 (1967).Google Scholar

Chapter 7

  1. [1]
    The ideas of the present chapter are implicit in the work of Wigner (Ann. of Math. (1939)), V. Bargmann and E. Wigner, Proc. Nat. Acad. Sci. U. S. A., 34 211 (1946), and are treated explicitly by Pursey, Ann. Phys., 32, 157 (1965), to which the reader is referred for many other references.Google Scholar
  2. [2]
    L. Foldy, Phys. Rev., 102, 568 (1956).Google Scholar
  3. [3]
    M. Jacob, G. Wick, Ann. Phys., 7, 404 (1959).Google Scholar
  4. [4]
    A. Wightman, Symmetry Principles at High Energy, edited by A. Perlmutter et al. Benjamin, New York (1968). S. Weinberg, Phys. Rev., 133B, 1318 (1964).Google Scholar
  5. [5]
    K. Johnson, E. Sudarshan, Ann. Phys., 13, 126 (1961).Google Scholar
  6. [6]
    I. Gelfand, R. Minlos, Z. Shapiro, Representations of the Rotation and Lorentz Groups, Pergamon, New York (1963).Google Scholar
  7. [7]
    M. Fierz, Helv. Phys. Acta, 12, 3 (1939).Google Scholar
  8. [8]
    W. Rarita, J. Schwinger, Phys. Rev., 60, 61 (1941).Google Scholar
  9. [9]
    V. Bargmann, E. Wigner, Proc. Nat. Acad. Sci. U. S. A., 34, 211 (1946).Google Scholar

Chapter 8

  1. [1]
    E. Majorana, Nuovo Cimento, 9, 335 (1932).Google Scholar
  2. [2]
    See reference [6] of Chapter 7.Google Scholar
  3. [3]
    E. Abers, I. Grodsky, R. Norton, Phys. Rev., 159, 1222 (1967).Google Scholar
  4. [4]
    G. Feldman, P. Mathews, Phys. Rev., 154, 1241 (1967). C. Fronsdal, ibid., 156, 1665 (1967). Further references can be found in L. O'Raifeartaigh, Symmetry Principles at High Energy, edited by A. Perlmutter et al., Benjamin, New York (1968) and I. Todorov, Proceedings of Theoretical High Energy Conference, Rochester (1967).Google Scholar
  5. [5]
    I. Grodsky, R. Streater, Phys. Rev. Lett., 20, 695 (1968).Google Scholar
  6. [6]
    N. Bogoliubov, V. Vladimirov, Nauch. Dokl. Vysshei, Shkoly (1958), 3, p. 26. R. F. Streater, Ph.D. Thesis, London (1959), p. 41. J. Bros. H. Epstein, V. Glaser, Comm. Math. Phys., 6, 77 (1967).Google Scholar
  7. [7]
    A. Oksak, I. Todorov, Degeneracy of the Mass-Spectrum for Infinite-Component Fields, Princeton Institute for Advanced Study, Preprint (1970).Google Scholar

Chapter 9

  1. [1]
    J. Hamilton, Theory of Elementary Particles, Oxford (1959). G. Chew, S-matrix Theory of Strong Interactions, Benjamin (1961). G. Chew, M. Jacob, Strong Interaction Physics, Benjamin (1964).Google Scholar
  2. [2]
    R. Eden, P. Landshoff, D. Olive, J. Polkinghorne, The Analytic S-matrix, Cambridge (1966). R. Eden, High Energy Collisions of Elementary Particles, Cambridge (1967). G. Källen, Elementary Particle Physics, Addison-Wesley, New York (1964). A. Wightman, Dispersion Relations and Elementary Particles, edited by C. de Witt & R. Omnes, Wiley, New York (1960).Google Scholar
  3. [3]
    L. Schiff, Quantum Mechanics, McGraw-Hill, New York (1949).Google Scholar
  4. [4]
    T. Regge, Nuovo Cimento, 18, 947 (1960).Google Scholar
  5. [5]
    G. Chew, S. Frautschi, Phys. Rev. Lett., 8, 41 (1962). M. Gell-Mann, S. Frautschi, F. Zachariasen, Phys. Rev., 126, 2204 (1962).Google Scholar
  6. [6]
    E. J. Squires, Complex Angular Momentum and Particle Physics, Benjamin, New York (1963). M. Froissart, R. Omnes, Mandelstam Theory and Regge Poles, Benjamin, New York (1963). R. Newton, The Complex J-plane, Benjamin, New York (1964). S. Frautschi, Regge-Poles and S-matrix Theory, Benjamin, New York (1963).Google Scholar
  7. [7]
    M. Toller, Nuovo Cimento, 37, 631 (1965). H. Joos, in Lectures in Theoretical Physics, University of Colorado, Boulder (1964), Fortschr. Physik, 10, 65 (1962).Google Scholar
  8. [8]
    V. Bargmann, Ann. of Math., 48, 586 (1947).Google Scholar
  9. [9]
    J. Boyce, J. Math. Phys., 8, 675 (1967).Google Scholar
  10. [10]
    D. Freedman, J. Wang, Phys. Rev., 153, 1596 (1967). G. Domokos, G. Tindle, ibid., 165, 1906 (1968). M. Toller, Nuovo Cimento, 54, 295 (1968).Google Scholar
  11. [11]
    A. Ahmadzadeh, R. Jacob, Phys. Rev., 176, 1719 (1968).Google Scholar

Chapter 10

  1. [1]
    A few references for isotopic spin are: J. Blatt, V. Weisskopf, Theoretical Nuclear Physics, Wiley, New York (1952); P. Roman, Theory of Elementary Particles, North-Holland, Amsterdam (1960); S. Schweber, Relativistic Quantum Field Theory, Row-Peterson, New York (1961).Google Scholar
  2. [1]a
    Some references for SU(3) are: M. Gell-Mann, Y. Ne'eman, The Eightfold Way, Benjamin, New York (1964); M. Gourdin, Unitary Symmetries, North-Holland, Amsterdam (1967); P. Carruthers, Introduction to Unitary Symmetry, Wiley, New York (1966); E. Loebl, Group Theory and its Applications, Academic Press, New York (1968).Google Scholar
  3. [2]
    See also: F. Lurgat, L. Michel, Nuovo Cimento, 21, 575 (1961); L. Michel in Group Theoretical Concepts and Methods in Elementary Particle Physics — Istanbul Summer School 1962, edited by F. Gürsey, Gordon & Breach, New York (1964).Google Scholar

Chapter 11

  1. [1]
    M. Gell-Mann, Phys. Lett., 8, 214 (1964). G. Zweig, CERN Reports nos 8/82/TH. 401 and 8419/TH.412 (1964).Google Scholar
  2. [2]
    Although it is convenient to describe SU(6) in terms of quarks, they were not used explicitly in the original introduction, F. Gürsey, Phys. Rev. Lett., 13, 173 (1964), A. Pais, L. Radicati, ibid., 13, 175 (1964), F. Gürsey, A. Pais, L. Radicati, ibid., 13, 299 (1964), B. Sakita, Phys. Rev., 136, B1756 (1964). For a review article on SU(6), containing an extensive list of references, see A. Pais, Rev. Mod. Phys., 38, 215 (1966).Google Scholar
  3. [3]
    K. Bitar, F. Gürsey, Phys. Rev., 164, 1805 (1964).Google Scholar
  4. [4]
    B. Sakita, K. Wali, Phys. Rev., 139, B1355 (1965). A. Salam, R. Delbourgo, J. Strathdee, Proc. Roy. Soc., 284A, 146 (1965). M. Beg, A. Pais, Phys. Rev. Lett., 14, 267 (1965).Google Scholar
  5. [5]
    M. Beg, A. Pais, Phys. Rev. Lett., 14, 509 (1965).Google Scholar
  6. [6]
    S. Coleman, Phys. Rev., 138, B1262 (1965). S. Coleman, J. Mandula, Phys. Rev., 159, 1251 (1967).Google Scholar
  7. [7]
    For a review of the mathematical aspects of the mass-spectrum problem and other mathematical aspects of the difficulty of combining SU(3) and P+ in G see G. Hegerfeldt, J. Henning, Fortschr. Physik, 16, 491 (1968)., 17, 463 (1969).Google Scholar
  8. [8]
    L. Michel, Phys. Rev., 137, B405 (1965). H. Lipkin, in Symmetry Principles at High Energy, edited by A. Perlmutter et al., Benjamin, New York (1968). See also: W. McGlinn, Phys. Rev. Lett., 12, 467 (1964), E. C. G. Sudarshan, J. Math. Phys., 6, 1329 (1965) and reference [6].Google Scholar

Chapter 12

  1. [1]
    Current Algebra was originally proposed by M. Gell-Mann, Physics, 1, 63 (1964); Phys. Rev., 125, 1067 (1962). The two standard books on current algebra are: S. Adler and R. Dashen, Current Algebras, Benjamin, New York, (1968); B. Renner, Current Algebras and their Applications, Permagon Press, Oxford (1968). See also A. Völkel, U. Völkel, Nuovo Cimento, 63A, 203 (1969).Google Scholar
  2. [2]
    J. Schwinger, Phys. Rev. Lett. 3, 296 (1959).Google Scholar
  3. [3]
    M. Gell-Mann, Proceedings Conference High Energy Physics held in Rochester, 1960, p. 508 in The Eightfold Way, Benjamin, New York (1964).Google Scholar
  4. [4]
    S. Coleman, J. Math. Phys., 7, 787 (1966).Google Scholar
  5. [5]
    S. Adler, Phys. Rev. Lett., 25, 1051 (1965). W. Weisberger, ibid., 25, 1047 (1965).Google Scholar
  6. [6]
    B. Lee, Phys. Rev. Lett., 14, 676 (1965).Google Scholar
  7. [7]
    R. Dashen, M. Gell-Mann, Phys. Rev. Lett., 17, 340 (1966). S. Fubini, Proceedings Fourth Coral Gables Conference 1967, W. H. Freeman & Co., San Francisco (1967).Google Scholar
  8. [8]
    S.-J. Chang, R. Dashen, L. O'Raifeartaigh, Phys. Rev. Lett., 21, 1026 (1968). B. Hamprecht, H. Kleinert, Phys. Rev., 180, 1410 (1969). M. Gell-Mann, D. Horn, J. Weyer, Proceedings Heidelberg International Conference, North-Holland, Amsterdam (1968). H. Leutwyler, Phys. Rev. Lett., 20, 561 (1968). H. Bebié, F. Ghielmetti, V. Gargé, H. Leutwyler, Phys. Rev., 177, 2196 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • L. O'Raifeartaigh
    • 1
  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 2Ireland

Personalised recommendations