Restrictions of unitary representations to subgroups and Ergodic theory: Group extensions and group cohomology

  • Calvin C. Moore
Part of the Lecture Notes in Physics book series (LNP, volume 6)


Spectral Sequence Unitary Representation Cohomology Group Regular Representation Group Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Auslander, L., et al. “Flows on Homogeneous Spaces”, Annals of Mathematics Studies, No. 53, Princeton (1963).Google Scholar
  2. [2]
    Auslander, L., and Green, L. “G-induced Flows”, Am. J. Math., 88, 43–60 (1966).Google Scholar
  3. [3]
    Auslander, L., and Moore, C. C. “Unitary Representations of Solvable Lie Groups”, Mem. Am. Math. Soc., No. 62 (1966).Google Scholar
  4. [4]
    Avez, A. “Ergodic Theory of Dynamical Systems”, Notes, University of Minnesota (1966).Google Scholar
  5. [5]
    Bargmann, V. “On Unitary Ray Representations of Continuous Groups”, Ann. Math., 59, 1–46 (1954).Google Scholar
  6. [6]
    Bruhat, F. “Sur les Representations Induites des Groupes de Lie”, Bull. Soc. Math. France, 84, 97–205 (1956).Google Scholar
  7. [7]
    Borel, A. “Density Properties for Certain Subgroups of Semi-simple Groups Without Compact Components”, Ann. Math., 72, 179–188 (1960).Google Scholar
  8. [8]
    Borel, A., and Harish-Chandra. “Arithmetic Subgroups of Algebraic Groups”, Ann. Math., 75, 485–535 (1962).Google Scholar
  9. [9]
    Dixmier, J. “Dual et Quasi-dual dune Algebre de Banach Involutiv”, Trans. Am. Math. Soc., 104, 278–283 (1962).Google Scholar
  10. [10]
    Dixmier, J. Les C * Algebres et Leur Representations, Gauthier-Villars, Paris (1964).Google Scholar
  11. [11]
    Eilenberg, S., and MacLane, S. “Cohomology Theory in Abstract Groups, I”, Ann. Math., 48, 51–78 (1947).Google Scholar
  12. [12]
    Eilenberg, S. “Cohomology Theory in Abstract Groups, II”, Ann. Math., 48, 326–341 (1947).Google Scholar
  13. [13]
    Gelfand, I., and Fomin, S. “Geodesic Flows on Manifolds of Constant Negative Curvature”, Uspehi Mat. Nauk, 7, 118–137 (1952).Google Scholar
  14. [14]
    Halmos, P. Measure Theory, Van Nostrand, New York (1950).Google Scholar
  15. [15]
    Halmos, P. Lectures on Ergodic Theory, Publications of the Mathematical Society of Japan, No. 3 (1956).Google Scholar
  16. [16]
    Hochschild, G. “Group Extensions of Lie Groups I”, Ann. Math., 54, 96–109 (1951).Google Scholar
  17. [17]
    Hochschild, G. The Structure of Lie Groups, Holden Day, San Francisco (1965).Google Scholar
  18. [18]
    Hochschild, G., and Mostow, G. D. “Cohomology of Lie Groups”, Illinois J. Math., 6, 367–401 (1962).Google Scholar
  19. [19]
    Hochschild, G., and Serre, J. P. “Cohomology of Group Extensions”, Trans. Am. Math. Soc., 74, 110–134 (1953).Google Scholar
  20. [20]
    Harish-Chandra. “Representations of Semi-simple Lie Groups V”, Proc. Nat. Acad. Sci., 40, 1076–1077 (1954).Google Scholar
  21. [21]
    Harish-Chandra. “Discrete Series for Semi-simple Lie Groups”, Acta Math., 113, 242–318 (1965).Google Scholar
  22. [22]
    Kadison, R. V. “Transformations of States in Operator Theory and Dynamics”, Topology, 3, 177–198 (1965).Google Scholar
  23. [23]
    Kallman, R. “Spatially Induced Groups of Automorphisms of Certain von Neumann Algebras” (to appear).Google Scholar
  24. [24]
    Khinchin, A. Mathematical Foundations of Statistical Mechanics, Dover, New York (1949).Google Scholar
  25. [25]
    Loomis, L. An Introduction to Abstract Harmonic Analysis, Van Nostrand, New York (1953).Google Scholar
  26. [26]
    Mackey, G. W. “A Theorem of Stone and von Neumann”, Duke Math. J., 16, 313–326 (1949).Google Scholar
  27. [27]
    Mackey, G. W. “On Induced Representations of Groups”, Am. J. Math., 73, 576–593 (1951).Google Scholar
  28. [28]
    Mackey, G. W. “Induced Representations of Locally Compact Groups I”, Ann. of Math., 55, 101–139 (1952).Google Scholar
  29. [29]
    Mackey, G. W. “Les Ensembles Boreliens et Les Extensions des Groupes”, J. Math. Pures Appl., 36, 171–178 (1957).Google Scholar
  30. [30]
    Mackey, G. W. “Borel Structures in Groups and Their Duals”, Trans. Am. Math. Soc., 85, 134–165 (1957).Google Scholar
  31. [31]
    Mackey, G. W. “Unitary Representations of Group Extensions”, Acta Math., 99, 265–311 (1958).Google Scholar
  32. [32]
    Mackey, G. W. “Point Realizations of Transformation Groups”, Illinois J. Math., 6, 327–335 (1962).Google Scholar
  33. [33]
    Mackey, G. W. “The Theory of Group Representations”, mimeographed notes, University of Chicago (1955).Google Scholar
  34. [34]
    Mackey, G. W. “Infinite Dimensional Group Representations”, Bull. Amer. Math. Soc., 69, 628–686 (1963).Google Scholar
  35. [35]
    Mautner, F. I. “Geodesic Flows on Symmetric Riemann Spaces”, Ann. Math., 65, 416–431 (1957).Google Scholar
  36. [36]
    Michel, L. “Sur les Extensions Centrales du Groupe de Lorentz Inhomogene Connexe”, Nucl. Phys., 57, 356–385 (1964).Google Scholar
  37. [37]
    Moore, C. C. “Extensions and Low Dimensional Cohomology Theory of Locally Compact Groups, I”, Trans. Am. Math. Soc., 113, 40–63 (1964).Google Scholar
  38. [38]
    Moore, C. C. “Extensions and Low Dimensional Cohomology Theory of Locally Compact Groups, II”, Trans. Am. Math. Soc., 113, 63–86 (1964).Google Scholar
  39. [39]
    Moore, C. C. “Ergodicity of Flows on Homogeneous Spaces”, Am. J. Math., 88, 154–178 (1966).Google Scholar
  40. [40]
    Moore, C. C. “Group Extensions of P-adic and Adelic Linear Groups”, Inst. Hautes Études Sci. Publ. Math., (35), 5–74 (1968).Google Scholar
  41. [41]
    Mostow, G. D. “Cohomology of Topological Groups and Solvmanifolds”, Ann. Math., 73, 20–48 (1961).Google Scholar
  42. [42]
    O'Raifeartaigh, L. “Mass Differences and Lie Algebras of Finite Order”, Phys. Rev. Lett., 14, 575–577 (1965).Google Scholar
  43. [43]
    Parasyuk, O. “Horocycle Flows on Surfaces of Negative Curvature”, Uspehi Mat. Nauk, 8, 125–26 (1953).Google Scholar
  44. [44]
    Segal, I. “An Extension of a Theorem of L. O'Raifeartaigh”, J. Functional Analysis, 1, 1–21 (1967).Google Scholar
  45. [45]
    Serre, J. P. Cohomologie Galoisienne, Berlin, Springer (1964).Google Scholar
  46. [46]
    Shale, D. “Linear Isometries of Free Boson Fields”, Trans. Am. Math. Soc., 103, 149–167 (1962).Google Scholar
  47. [47]
    Shapiro, A. “Group Extensions of Compact Lie Groups”, Ann. Math., 50, 581–585 (1949).Google Scholar
  48. [48]
    Sherman, T. “A Weight Theory for Unitary Representations”, Canad. J. Math., 18, 159–168 (1966).Google Scholar
  49. [49]
    Seminaire “Sophus Lie”, Paris (1954).Google Scholar
  50. [50]
    Weil, W. L'Integration dans Zes Groupes Topologiques et ses Applications, Hermann, Paris (1940).Google Scholar
  51. [51]
    Weil, A. “Sur Certains Groupes D'Operateurs Unitaires”, Acta Math., 111, 143–211 (1964).Google Scholar
  52. [52]
    Wigner, E. Group Theory, Academic Press, New York (1959).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Calvin C. Moore
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations