Advertisement

Romansy 16 pp 363-370 | Cite as

Mobile Robots Based on Magnetizable Elastic Elements and Ferrofluids

  • Klaus Zimmermann
  • Igor Zeidis
Part of the CISM Courses and Lectures book series (CISM, volume 487)

Abstract

In the present paper, we analyze the locomotion using the effects of deformation of magnetizable elastic material and deformation of the surface of a membrane filled with a magnetic fluid under the influence of a magnetic field. Devices based on these principles can be used in medicine and biology. Prototypes implementing these principles have been constructed.

Keywords

Magnetic Field Mobile Robot Magnetic Permeability Magnetic Fluid Parametric Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bogoljubow, N. N., and Mitropolski, Yu. A. (1965). Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen, Akademie-Verlag, Berlin.Google Scholar
  2. Rosenzweig, R. E. (1985). Ferrohydrodynamics, Cambridge University Press.Google Scholar
  3. Turkov, V. A. (2002). Deformation of an elastic composite involving a magnetic fluid. Journal of Magnetism and Magnetic Materials, 252:156–158.CrossRefGoogle Scholar
  4. Zeidis, I., and Zimmermann, K. (2000). Ein mathematisches Modell für die peristaltische Bewegung als Grundlage für das Design wurmartiger Mikroroboter. Technische Mechanik 1:73–80.Google Scholar
  5. Zimmermann, K., Zeidis, I., and Steigenberger, J. (2002a). Oscillation of a Chain of Pointmasses as a Model of Worm-Like Motion Systems. In Proceedings of the 4 th European Nonlinear Oscillations Conference, Moscow. 49.Google Scholar
  6. Zimmermann, K., Zeidis, I., and Steigenberger, J. (2002b). Mathematical Model of Worm-like Motion Systems with Finite and Infinite Degree of Freedom. In Proceedings of the 14 th CISM-IFToMM Symposium (RoManSy 14), Italy. 507–516.Google Scholar
  7. Zimmermann, K. and Zeidis, I. (2003). On artifical Worms as Chain of Mass Points. In Proceedings of the 6 th International Conference of Climbing and walking Robots (CLAWAR 2003), Italy. 11–18.Google Scholar
  8. Zimmermann, K., Zeidis, I., Steigenberger, J., and Pivovarov, M. (2004a). An Aproach to Worm-Like Motion. In Proceedings of the 21 st International Congress of Theoretical and Applied Mechanics, Poland. 371.Google Scholar
  9. Zimmermann K., Zeidis I., Naletova V. A.,. and Turkov V. A. (2004b). Modelling of worm-like motion systems with magneto-elastic elements. Physica Status Solidi (c), 1(12):3706–3709.CrossRefGoogle Scholar
  10. Zimmermann K., Zeidis I., Naletova V. A., and Turkov V. A. (2004c). Waves of on the surface of a magnetic fluid layer in a travelling magnetic field. Journal of Magnetism and Magnetic Materials, 268:227–231.CrossRefGoogle Scholar
  11. Zimmermann K., Zeidis I., Naletova V. A., and Turkov V. A. (2004d). Travelling waves on a free surface of a magnetic fluid layer”, Journal of Magnetism and Magnetic Materials, 272–276:2343–2344.CrossRefGoogle Scholar
  12. Zimmermann K., Zeidis I., Naletova V. A., Turkov V. A., and V.E. Bachurin (2005). Locomotion based on a two-layers flow of magnetizable nanosuspensions”, Journal of Magnetism and Magnetic Materials, 290–291:808–810.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2006

Authors and Affiliations

  • Klaus Zimmermann
    • 1
  • Igor Zeidis
    • 1
  1. 1.Faculty for Mechanical EngineeringTechnische Universitaet IlmenauIlmenauGermany

Personalised recommendations