Qualitative Preference Modelling in Constraint Satisfaction

  • Yannis Dimopoulos
  • Pavlos Moraitis
  • Alexis Tsoukiàs
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 482)


The paper addresses the problem of finding an appropriate formalism for the representation of preferences expressed on an n-dimensional space of attributes and on different layers: generic, contextual and structural preferences.

The paper first introduces a general framework for preference modelling and then specialises it for the multi-layer case. It then shows that in the case we privilege computational efficiency an appropriate formalism can be the CP-nets one. More precisely we show how contextual and structural preferences can be seen as different types of constraint satisfaction problems to which apply some Ceteris-Paribus preferential reasoning.


Binary Relation Preference Statement Constraint Satisfaction Constraint Satisfaction Problem White Wine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Boutilier. Toward a logic for qualitative decision theory. In Proceedings of the 4th International Conference on Knowledge Representation and Reasoning, KR’94, pages 75–86. Morgan Kaufmann, San Francisco, 1994.Google Scholar
  2. 2.
    C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris paribus preference statements. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, UAI’99, pages 71–80. Morgan Kaufmann, San Francisco, 1999.Google Scholar
  3. 3.
    D. Bouyssou. Outranking relations: do they have special properties? Journal of Multi-Criteria Decision Analysis, 5:99–111, 1996.MATHCrossRefGoogle Scholar
  4. 4.
    D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukiàs, and P. Vincke. Evaluation and decision models: a critical perspective. Kluwer Academic, Dordrecht, 2000.MATHGoogle Scholar
  5. 5.
    D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukiàs, and P. Vincke. Evaluation and decision models: stepping stones for the analyst. Kluwer Academic, Dordrecht, forthcoming.Google Scholar
  6. 6.
    D. Bouyssou and M. Pirlot. Conjoint measurement tools for MCDM. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 73–132. Springer Verlag, Boston, Dordrecht, London, 2005.CrossRefGoogle Scholar
  7. 7.
    R. Brafman and C. Domshlak. Introducing variable importance tradeoffs into CP-Nets. In Proceedings of UAI-2002, pages 69–76, 2002.Google Scholar
  8. 8.
    R. Brafman and M. Tennenholtz. On the foundations of qualitative decision theory. In Proceedings of the 13th National Conference on Artificial Intelligence, AAAI96, pages 1291–1296. MIT Press, Cambridge, 1996.Google Scholar
  9. 9.
    R. Brafman and M. Tennenholtz. Modeling agents as qualitative decision makers. Artificial Intelligence, 94:217–268, 1997.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Doyle. Prospects for preferences. Computational Intelligence, 20:111136, 2004.CrossRefGoogle Scholar
  11. 11.
    J. Doyle and M. Wellman. Representing preferences as ceteris paribus comparatives. In Decision-Theoretic Planning: Papers from the 1994 Spring AAAI Symposium, pages 69–75. AAAI Press, Menlo Park, California, 1994.Google Scholar
  12. 12.
    D. Dubois, H. Fargier, P. Perny, and H. Prade. Qualitative decision theory: from Savage’s axioms to non-monotonic reasoning. Journal of the ACM, 49:455–495, 2002.CrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.MATHGoogle Scholar
  14. 14.
    P. Fishburn. Lexicographic orders, utilities and decision rules: a survey. Management Science, 20:1442–1471, 1974.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    P. Fishburn. Preference structures and their numerical representations. Theoretical Computer Science, 217(2):359–383, April 1999.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. French. Decision theory — An introduction to the mathematics of rationality. Ellis Horwood, Chichester, 1988.MATHGoogle Scholar
  17. 17.
    R. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs. J. Wiley, New York, 1976.Google Scholar
  18. 18.
    D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foundations of measurement, volume 1: Additive and polynomial representations. Academic Press, New York, 1971.MATHGoogle Scholar
  19. 19.
    S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In Proceedings of AAAI-1990, pages 25–32, 1990.Google Scholar
  20. 20.
    M. Öztürk, A. Tsoukiàs, and Ph. Vincke. Preference modelling. In M. Ehrgott, S. Greco, and J. Figueira, editors, State of the Art in Multiple Criteria Decision Analysis, pages 27–72. Springer Verlag, Berlin, 2005.CrossRefGoogle Scholar
  21. 21.
    M. Roubens and P. Vincke. Preference Modeling. LNEMS 250, Springer Verlag, Berlin, 1985.Google Scholar
  22. 22.
    L. Savage. The Foundations of Statistics. J. Wiley, New York, 1954. second revised edition, 1972.MATHGoogle Scholar
  23. 23.
    A. Tsoukiàs. On the concept of decision aiding process. Annals of Operations Research. To appear; appeared previously as DIMACS 2003-38 technical report, Rutgers University.Google Scholar
  24. 24.
    P. Vincke. Multicriteria Decision-Aid. J. Wiley, New York, 1992.Google Scholar
  25. 25.
    P. Wakker. Additive representations of preferences — A new foundation of decision analysis. Kluwer Academic, Dordrecht, 1989.MATHGoogle Scholar
  26. 26.
    N. Wilson. Consistency and constrained optimisation for conditional preferences. In Proceedings of ECAI-04, pages 888–894, 2004.Google Scholar
  27. 27.
    N. Wilson. Extending CP-nets with stronger conditional preference statements. In Proceedings of AAAI-04, pages 735–741, 2004.Google Scholar

Copyright information

© CISM, Udine 2006

Authors and Affiliations

  • Yannis Dimopoulos
    • 1
  • Pavlos Moraitis
    • 2
  • Alexis Tsoukiàs
    • 3
  1. 1.Computer Science DepartmentUniversity of CyprusCyprus
  2. 2.Dept. of Mathematics and Computer ScienceUniversity René Descartes-Paris 5Paris
  3. 3.LAMSADE - CNRSUniversité Paris DauphineParis

Personalised recommendations