Some innovative industrial prospects centered on inverse analyses

  • G. Maier
  • M. Bocciarelli
  • R. Fedele
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 469)


This chapter presents several applications of various parameter identification methods to practical engineering problems. The focus is here on novel industrial uses of inverse analyses as integrations of experimental and computational mechanics and on the potential benefits which derive, or may reasonably be expected in the near future. The parameter identification problems discussed herein with some details from the above standpoint concern the following topics: micro and nano-indentation tests supplemented by the imprint mapping; local properties in heterogeneous materials assessed on the basis of conventional overall tests. Four other practical problems solved by inverse analysis are more concisely presented subsequently and some new methodological features are pointed out.


Indentation Test Inverse Analysis Railway Wheel Indentation Curve Forward Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abaqus, 2003. Release 6.3. Theory and User’s manuals. Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA.Google Scholar
  2. Ahmed, T., Burley, E., Rigden, S., Abu-Tair, A., 2003. The effect of alkali reactivity on the mechanical properties of concrete. Constr. Build. Mater. 17, 123–144.CrossRefGoogle Scholar
  3. Anderson, T., 2003. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, New York (3rd Edition).MATHGoogle Scholar
  4. Anthoine, A., 1995. Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct. 32(2), 137–163.MATHCrossRefGoogle Scholar
  5. Ardito, R., Bartolotta, P., Ceriani, L., Maier, G., 2003. Diagnostic inverse analysis of concrete dams with statical excitation. In: Proc. of the V Euromech Solid Mechanics Conference ESMC5, Salonicco (Greece), available at the IALAD web-site: Scholar
  6. Bates, D., Watts, D., 1988. Nonlinear Regression Analysis and its Applications. John Wiley & Sons, New York.MATHGoogle Scholar
  7. Bažant, Z., Guo, Z., 2002. Size-effect and asymptotic matching approximations in strain-gradient theories of micro-scale plasticity. Int. J. Solids Struct. 39(21–22), 5633–5657.CrossRefMATHGoogle Scholar
  8. Bažant, Z., Planas, J., 1997. Fracture and Size-Effect in Concrete and Other Quasi-Brittle Materials. CRC Press, Boca Raton (USA).Google Scholar
  9. Bazaraa, M., Sherali, H., Shetty, C, 1993. Nonlinear Programming. Theory and Algorithms. John Wiley & Sons, New York.MATHGoogle Scholar
  10. Belytschko, T., Liu, W., Moran, B., 2002. Nonlinear Finite Element for Continua and Structures. John Wiley & Sons Ltd., Baffins Lane (England).Google Scholar
  11. Bhushan, B., 1999. Handbooh of micro/nano tribology. CRC Press, Boca Raton (USA).Google Scholar
  12. Bicego, V., 2004. Small punch test method: results from a european creep testing round robin. In: 4th International Conference on Advances in Material Technology for Fossil Power Plants, Hilton Head Island (USA).Google Scholar
  13. Bittanti, S., Maier, G., Nappi, A., 1984. Inverse problems in structural elasto-plasticity: a kalman filter approach. In: Sawczuk, A., Bianchi, G. (Eds.), Plasticity Today. CISM book, Elsevier Applied Science Publishers, London, pp. 311–329.Google Scholar
  14. Bocciarelli, M., Bolzon, G., Maier, G., 2004a. Mechanical characterization of anisotropic materials by indentation test, imprint mapping and inverse analysis. In: 6th World Conference on Computational Mechanics WCCM VI, Beijing (China). Invited lecture.Google Scholar
  15. Bocciarelli, M., Cocchetti, G., Maier, G., 2004b. Shakedown analysis of train wheels by fourier series and nonlinear programming. Eng. Struct. 26(4), 455–470.CrossRefGoogle Scholar
  16. Bocher, L., Delobelle, P., Robinet, P., Feaugas, X., 2001. Mechanical microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure. Int. J. Plasticity 17, 1491–1530.MATHCrossRefGoogle Scholar
  17. Bolzon, G., Fedele, R., Maier, G., 2002a. Parameter identification of a cohesive crack model by kalman filter. Comp. Meth. Appl. Mech. Eng. 191, 2947–2871.CrossRefGoogle Scholar
  18. Bolzon, G., Ghilotti, D., Maier, G., 1997. Parameter identification of the cohesive crack model. In: Sol, H., Oomens, C. (Eds.), Material Identification Using Mixed Numerical Experimental Methods. Kluwer Academic Publishers, Dordrecht, pp. 213–222.Google Scholar
  19. Bolzon, G., Ghilotti, D., Maier, G., 2002b. Strength of periodic elastic-brittle composites evaluated through homogenization and parameter identification. Eur. J. Mech.-A/Solids 21, 355–378.MATHCrossRefGoogle Scholar
  20. Bolzon, G., Maier, G., Panico, M., 2004. Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957–2975.MATHCrossRefGoogle Scholar
  21. Bower, A., Johnson, K., 1989. The influence of strain hardening on cumulative deformation in rolling and sliding contact. J. Mech. Physics Solids 37(4), 471–493.CrossRefGoogle Scholar
  22. Bruhns, O., Anding, D., 1999. On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour. Int. J. Plasticity 15, 1311–1340.MATHCrossRefGoogle Scholar
  23. Brühwiler, E., Wittmann, F., 1990. The wedge splitting test, a new method of performing stable fracture mechanics tests. Eng. Fracture Mech. 35, 117–125.CrossRefGoogle Scholar
  24. Bui, H., 1994. Inverse Problems in the Mechanics of Materials: an Introduction. CRC Press, London.Google Scholar
  25. Catlin, D., 1989. Estimation, Control and the Discrete Kalman Filter. Springer Verlag, Applied Mathematical Sciences, Berlin.MATHGoogle Scholar
  26. Chaboche, J., Rousselier, G., 1983. On the plastic and viscoplastic constitutive equations-part ii: Application of the internal variable concept to the 316 stainless steel. J. Press. Vess. Tech. ASME 105, 159–164.CrossRefGoogle Scholar
  27. Cividini, A., Maier, G., Nappi, A., 1983. Parameter estimation of a static geotechnical model using a bayes’ approach. Int. J. Rock Mech. Mining Sci. 20, 215–226.CrossRefGoogle Scholar
  28. Coleman, T., Li, Y., 1996. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt. 6(2), 418–445.MATHCrossRefMathSciNetGoogle Scholar
  29. Dao, N., Chollacoop, N., van Vliet, K., Venkatesh, T., Suresh, S., 2001. Computational modeling of the forward and reverse problem in instrumented sharp indentation. Acta Mater. 49, 3899–3918.CrossRefGoogle Scholar
  30. Delobelle, P., Robinet, P., Bocher, L., 1995. Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel. Int. J. Plasticity 11(4), 1491–1530.CrossRefGoogle Scholar
  31. Elmustafa, A., Stone, D., 2003. Nano-indentation and the indentation size-effect: Kinetics of deformation and strain gradient plasticity. J Mech. Phys. Solids 51(2), 357–381.MATHCrossRefGoogle Scholar
  32. Fedele, R., Filippini, M., Maier, G., 2003. Constitutive model calibration for railway wheel steel through tension-torsion tests. Comp. Struct, (submitted for publication).Google Scholar
  33. Fedele, R., Maier, G., Whelan, M., 2004. Calibration of local constitutive models through measurements at the macroscale in heterogeneous media. Int. J. Plasticity (submitted for publication).Google Scholar
  34. Gioda, G., Maier, G., 1980. Direct search solution of an inverse problem in elasto-plasticity: identification of cohesion, friction angle and in situ stress by pressure tunnel tests. Int. J. Num. Meth. Eng. 15, 1823–1848.MATHCrossRefGoogle Scholar
  35. Gu, Y., Nakamura, T., Prchlik, L., Sampath, S., Wallace, J., 2003. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials. Mater. Sci. Eng. A 345, 223–233.CrossRefGoogle Scholar
  36. Guinea, G., Planas, J., Elices, M., 1992. Measurement of the fracture energy using three-point bend tests: Part 1-influence of experimental procedures. Mater. Struct. 25, 212–218.CrossRefGoogle Scholar
  37. Haykin, S., 1999. Neural Networks. A Comprehensive Foundation. 2nd edition, Prentice Hall, Upper Saddle River (USA).MATHGoogle Scholar
  38. Hill, R., 1948. A theory of yielding and plastic flow of anisotropic metals. Roy. Soc. London A193, 281–297.CrossRefGoogle Scholar
  39. Huber, N., Nix, W., Gao, H., 2002. Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Math. Phys. and Eng. Sci. 458, 1593–1620.MATHCrossRefGoogle Scholar
  40. Johnson, K., 1992. The application of shakedown principles in rolling and sliding contact. Eur. J. Mech.-A/Solids 11, 155–172.Google Scholar
  41. Kailath, T., Sayed, A., Hassibi, B., 2000. Linear Estimation. Prentice Hall, London.Google Scholar
  42. Kaliszky, S., 1990. Plasticity: Theory and Engineering Applications. Elsevier, Amsterdam.Google Scholar
  43. Kleiber, M., Antunez, H., Hien, T., Kowalczyk, P., 1997. Parameter Sensitivity in Nonlinear Mechanics. Theory and Finite Element Computations. John Wiley & Sons, New York.Google Scholar
  44. Kucharski, S., Mròz, Z., 2001. Identification of plastic hardening parameters of metals from spherical indentation. Mat. Sci. Eng. A 318, 65–76.Google Scholar
  45. Mahnken, R., Stein, E., 1996. A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comp. Meth. Appl. Mech. Eng. 136, 225–258.MATHCrossRefGoogle Scholar
  46. Maier, G., Ardito, R., Fedele, R., 2004. Inverse analysis problems in structural engineering of concrete dams. In: 6th World Conference of Computational Mechanics WCCM VI, Beijing (China). Invited semiplenary lecture.Google Scholar
  47. Maier, G., Giannessi, F., Nappi, A., 1982. Indirect identification of yield limits by mathematical programming. J. Eng. Struct. 4, 86–98.CrossRefGoogle Scholar
  48. Matlab6.5, 2003. Optimization Toolbox Manual. The Math Works Inc.Google Scholar
  49. McDowell, D., 1995. Stress-state dependence of cyclic ratchetting behaviour of two rail steels. Int. J. Plasticity 11(4), 397–421.CrossRefGoogle Scholar
  50. Michel, J., Moulinec, H., Suquet, P., 1999. Effective properties of composite materials with periodic microstructure: a computational approach. Comp. Meth. Appl. Mech. Eng. 172, 109–143.MATHCrossRefMathSciNetGoogle Scholar
  51. Nakamura, T., Wang, T., Sampath, S., 2000. Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater. 48, 4293–4306.CrossRefGoogle Scholar
  52. Portier, L., Calloch, S., Marquis, D., Gever, P., 2000. Ratchetting under tension-torsion loadings: experiments and modeling. Int. J. Plasticity 16, 303–335.MATHCrossRefGoogle Scholar
  53. Shah, S., Carpinteri, A. (Eds.), 1991. RILEM Report 5. Fracture Mechanics Test Methods for Concrete. Chapman and Hall, London.Google Scholar
  54. Shu, J., Fleck, N., 1998. The prediction of a size-effect in micro-indentation. Int. J. Solids Struct. 35(13), 1363–1383.MATHCrossRefGoogle Scholar
  55. Stavroulakis, G., Bolzon, G., Waszczyszyn, Z., Ziemianski, L., 2003. Inverse analysis. In: Karihaloo, B., Ritchie, R., Milne, I. (Eds.), Comprehensive Structural Integrity. Elsevier Science Ltd, London, pp. 685–718.Google Scholar
  56. Suquet, P., 1987. Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (Eds.), Homogenization techniques for Composite Media. CISM book, Springer-Verlag, New-York, pp. 194–280.Google Scholar
  57. Swamy, R., Al-Asali, M., 1988. Engineering properties of concrete affected by alkali-silica reaction. ACI Mat. J. 85, 367–374.Google Scholar
  58. Taliercio, A., Coruzzi, R., 1999. Mechanical behaviour of brittle matrix composites: a homogenization approach. Int. J. Solids Struct. 36, 3591–3615.MATHCrossRefMathSciNetGoogle Scholar
  59. Tarantola, A., 1987. Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation. Elsevier Applied Science, Southampton.Google Scholar
  60. Tarchi, D., Pieraccini, M., Rudolf, H., Leva, D., Luzi, G., Bartoli, G., Atzeni, C, 2000. Structural static testing by interferometric synthetic radar. Comp. Mater. Sci. 33, 565–570.Google Scholar
  61. Tardieu, N., Constantinescu, A., 2000. On the determination of elastic coefficients from indentation experiments. Inv. Probl. Eng. 16, 577–588.MATHCrossRefMathSciNetGoogle Scholar
  62. Toropov, V., van der Giessen, E., 1993. Parameter identification for nonlinear constitutive models: Finite element simulation-optimization-nontrivial experiments. In: Pedersen, P. (Ed.), Optimal design with advanced materials. Proceedings of the IUTAM Symposium Lyngby, Denmark, August 18th–20th 1992. Elsevier Science Publishers, New-York, pp. 113–130.Google Scholar
  63. Venkatesh, T., van Vliet, K., Giannakopoulos, A., Suresh, S., 2000. Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Mater. 42, 833–839.CrossRefGoogle Scholar
  64. Yuan, H., Chen, J., 2001. Identification of the intrinsic material lenght in gradient plasticity theory from micro-indentation tests. Int. J. Solids Struct. 38(46), 8171–8187.MATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • G. Maier
    • 1
  • M. Bocciarelli
    • 1
  • R. Fedele
    • 1
  1. 1.Department of Structural EngineeringTechnical University (Politecnico) of MilanMilanoItaly

Personalised recommendations