The Reciprocity Gap Functional for Identifying Defects and Cracks

  • H. D. Bui
  • A. Constantinescu
  • H. Maigre
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 469)


The recovery of defects and cracks in solids using overdetermined boundary data, both the Dirichlet and the Neumann types, is considered in this paper. A review of the method for solving these inverse problems is given, focusing particularly on linearized inverse problems. It is shown how the reciprocity gap functional can solve nonlinear inverse problems involving identification of cracks and distributed defects in bounded solids. Exact solutions for planar cracks in 3D solids are given for static elasticity, heat diffusion and transient acoustics.


Inverse Problem Cauchy Problem Boundary Data Data Pair Planar Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, J.D., Sotitopoulos, D.A., and Zhu, H. (1987). Characterisation of cracks from ultrasonic scattering data. J. Appl. Mech., 54, 754.MATHCrossRefGoogle Scholar
  2. Alessandrini G., and Diaz Valenzuala A. (1996). Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34(3), 913–921.MATHCrossRefMathSciNetGoogle Scholar
  3. Alessandrini, G. (1993). Stable determination of a crack from boundary measurements. Proc. Roy. Society of Edinburgh, 123(A), 497–516.MATHMathSciNetGoogle Scholar
  4. Alves C.J.S, and Ha-Duong T. (1999). Inverse scattering for elastic plane waves. Inverse Problems, 15, 91–97.MATHCrossRefMathSciNetGoogle Scholar
  5. Alves C.J.S, and Ha-Duong T. (1997). On inverse scattering by screen. Inverse Problems 13, 1161–1176.MATHCrossRefMathSciNetGoogle Scholar
  6. Andrieux S., and Ben Abda, A. (1992). Identification de fissures planes par une donnée de bord unique: un procédé direct de location et d’identification. C.R. Acad. Sci. Paris, 315(I), 1323–1328.MATHGoogle Scholar
  7. Andrieux S., and Ben Abda, A. (1996). Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Problems, 12, 553–563.MATHCrossRefMathSciNetGoogle Scholar
  8. Andrieux, S. Ben Abda, A., and Bui H. D. (1997) Sur 1’identification des fissures planes via le concept d’écart à la réciprocité en élasticité. C.R. Acad. Sci. Paris, 324(I), 1431–1438.MATHGoogle Scholar
  9. Andrieux, S. Ben Abda, A., and Bui H. D. (1999). Reciprocity principle and crack identification. Inverse Problems, 15, 59–65.MATHCrossRefMathSciNetGoogle Scholar
  10. Arridge, S.R. (1999). Optical tomography in medical imaging. Inverse Problems, 15, R41–R93.MATHCrossRefMathSciNetGoogle Scholar
  11. Bannour, T., Ben Abda, A., and Jaoua, M. (1997). A semi-explicit algorithmfor the reconstruction of 3D planar cracks. Inverse Problems 13, 899–917.MATHCrossRefMathSciNetGoogle Scholar
  12. Ben Abda, A., and Bui, H.D. (2003). Planar crack identification for the transient heat equation. J. Inv. Illposed Problems, 11(1), 67–86.CrossRefGoogle Scholar
  13. Bojarski, N.N. (1981). Exact inverse scattering theory. Radio Sci., 16, 1025.Google Scholar
  14. Bonnet, M., and Bui, H.D. (1989). On some inverse problems for determining volume defects by electric current using boundary integral equations approaches: an overview. Proc. 6 th Japan Nat. Symp. On Boundary Elements Methods, Tokyo, JASCOME Publ. 179.Google Scholar
  15. Bryan, K, and Vogelius, M. (1992). A uniqueness result concerning the identification of a collection of cracks from finitely many elastostatic bundary measurements. SIAM J. Math. Anal. 23, 950–958.MATHCrossRefMathSciNetGoogle Scholar
  16. Bui, H.D. (1993). Introduction aux problèmes inverses en mécanique des matériaux. Eyrolles, Paris; English translation “Inverse problems in the mechanics of materials: an introduction”, CRC Press, Boca Raton (1994); Japanese translation, Shokabo, Tokyo (1994); Chinese translation, Harbin University Press (1995); Russian translation, Novosibirsk University Press (1996).Google Scholar
  17. Bui, H.D., and Constantinescu, A. (2000). Spatial localization on the error of constitutive law for the identification of defects in elastic bodies. Arch. Mech., 52, 511–522.MATHGoogle Scholar
  18. Bui, H.D., Constantinescu, A., and Maigre, H. (1999). Diffraction acoustique inverse de fissure plane: solution explicite pour un solide borné. C.R. Acad. Sci. Paris, t. 327(II), 971–976.MATHGoogle Scholar
  19. Calderon, A. (1980). On an inverse boundary problem. In Seminar on numerical analysis and application to continum physics, Rio de Janeiro, 65–73.Google Scholar
  20. Constantinescu, A. (1994). Sur l’identification des modules élastiques. PhD Thesis, Ecole Polytechnique, Palaiseau.Google Scholar
  21. Constantinescu, A. (1995). On the identification of elastic moduli from displacement-force boundary measurements. Int. J. Inverse Problems Engineering, 1, 293–315.Google Scholar
  22. Dang Dinh Ang, Gorenflo, R., Le Khoi, V., and Dang, D.T. (2000). Moment theory and some inverse problems in potential theory and heat conduction. Springer, Berlin.Google Scholar
  23. Friedman, A., and Vogelius, M. (1989). Determining cracks by boundary measurments. Indiana Univ. Math. J., 38(3), 527–556.MATHCrossRefMathSciNetGoogle Scholar
  24. Hadamard, J. (1952). Lectures on Cauchy’s problem. Dover, New York.MATHGoogle Scholar
  25. Hasskell, N.A. (1984). Radiation pattern of surface waves from point sources in a multi-layered medium. Bulletin of seismological Society of America, 54, 377.Google Scholar
  26. Ikehata, M. (1990). Inversion for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J. Appl. Math., 50(6), 1635.MATHCrossRefMathSciNetGoogle Scholar
  27. Isaacson, D., and Isaacson, E.L. (1989). Comment on Calderon’s paper “On an inverse boundary value problem”. Math. Compt., 52, 553.MATHCrossRefMathSciNetGoogle Scholar
  28. Kitagawa, T., and Hosoda, Y. (1993). New approaches to the optimal regularisation. Inverse Problems in Engineering Mechanics, Tanaka M. and Bui H.D. (Eds), Springer Verlag, Berlin, 21.Google Scholar
  29. Kohn, R.V., and Vogelius, M. (1984). Determining conductivity by measurements at boundary. Comm. Basic methods of tomography and inverse problems Pure Appl. Math. 37, 289.MATHMathSciNetGoogle Scholar
  30. Langenberg, K.J. (1987). Applied inverse problems for acoustic, electromagnetic wave scattering. In, Methods of tomography and inverse problemn, Sabatier P.C. (Ed.), Malvern Physics Ser., Adam Hilger, Bristol, Philadelphia.Google Scholar
  31. Lattès, R., and Lions, J.L. (1967). Méthode de quasi-réversibilité et applications. Dunod, Paris.MATHGoogle Scholar
  32. Laurentiev, M.M. (1967). Some improperly posed problems of mathematical physics. Springer Verlag, Berlin.Google Scholar
  33. Lions, J.L. (1986). Contrôlabilité exacte des systèmes distribués. C.R. Acad. Sci. Paris, 302(II), 471–475.MATHGoogle Scholar
  34. Lions, J.L. (1971). Optimal control of systems governed by partial derivative equations. Springer-Verlag, Berlin.Google Scholar
  35. Lorentz, E., and Andrieux, S. (2003). Analysis of non-local models through energetic formulations. Int. J. Solids and Structures, 40, 2905–2936.MATHCrossRefMathSciNetGoogle Scholar
  36. Nguyen, M.K., and Truong, T.T. (2002). On an integral transform and its inverse in nuclear imaging. Inverse Problems., 18(1), 265–277.MATHCrossRefMathSciNetGoogle Scholar
  37. Pontryagin, L.S., Boltianki, V., Gamkrelidze, R., and Michtchenko, E.F., (1974). Théorie mathématique des processus optimaux. Editions Mir, Moscou.Google Scholar
  38. Sabatier, P.C. (1987). Methods of tomography and inverse problems. Malvern Phys. Ser., Adam Hilger, Bristol, Philadelphia.MATHGoogle Scholar
  39. Schwartz, L. (1978). Théorie des distribution. Hermann, Paris.Google Scholar
  40. Stavroulakis, G.E., (2000). Inverse and crack identification problems in engineering mechanics. Dordrecht, Kluwer.Google Scholar
  41. Tikhonov, A., and Arsenine, V. (1976). Méthode de résolution de problèmes mal posés. Editions Mir, Moscou. English version: Methods for solving ill-posed problems, Nauka, Moscow.Google Scholar
  42. Truong, T.T., Nguyen, M.K., Bui, H.D., and Daveau, C. (2002). Determination of the electronic density in a medium by an inverse method based on double-Compton scattering in transmission imaging. Proc. 4 th International Conf. on Inverse Problems in Engineering: Theory and Practice, Rio de Janeiro, May 2002Google Scholar
  43. Weikl, W., Andra, H., and Schnack, E., (2001). An alternating iterative algorithm for the reconstruction of internal cracks in a three-dimensional solid body. Inverse Problems 17, 1957–1975.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • H. D. Bui
    • 1
  • A. Constantinescu
    • 1
  • H. Maigre
    • 1
  1. 1.Laboratoire de Mécanique des Solides, CNRSEcole PolytechniquePalaiseauFrance

Personalised recommendations