Multiscale Computational Damage Modelling of Laminate Composites

  • Ladevèze Pierre
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 474)


The main questions discussed here are how to bridge the micro- and mesomechanics of laminates and how this affects the understanding and prediction of localization and final fracture of engineering composite structures.


Energy Release Rate Final Fracture Laminate Composite Transverse Crack Delamination Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboudi, L., Lee, S. W., and Herakowich, C. T. (1988). Three dimensional analysis of laminates with cross cracks. ASME J. Appl. Mech. 55: 389–397.MATHCrossRefGoogle Scholar
  2. Allen, D. H., Groves, S. E., and Harris, C. E. (1988). A cumulative damage model for continuous fiber composite laminates with matrix cracking and interply delaminations. In Withcomb, J. D., ed., Composite Materials: Testing and Design. ASTM STP 972, Washington, DC, USA.. 57–80.Google Scholar
  3. Allix, O. (1992). Damage analysis of delamination around a hole. In Ladevèze, P., and Zienkiewicz, O. C, eds., New Advances in Computational Structural Mechanics, Elsevier Science Publishers B. V. 411–421.Google Scholar
  4. Allix, O. (2002). Interface damage mechanics: application to delamination. In Allix, O., and Hild, R, eds., Continuum Damage Mechanics of Materials and Structures, Elsevier. 295–324.Google Scholar
  5. Allix, O., Bahlouli, N., Cluzel, N., and Perret, C. (1996). Modelling and identification of temperature-dependent mechanical behavior of the elementary ply in carbon/epoxy laminates. Comp. Sci. Techn. 56: 883–888.CrossRefGoogle Scholar
  6. Allix, O., and Deü, J. F. (1997). Delay-damage modeling for fracture prediction of laminated composites under dynamic loading. Engineering Transactions 45: 29–46.Google Scholar
  7. Allix, O., Guedra-Degeorges, D., Guinard, S., and Vinet, A. (1999). 3D analysis applied to low-energy impacts on composite laminates. In Masard, T., and Vautrin, A., eds., Proceedings ICCM12T. 282–283.Google Scholar
  8. Allix, O., and Johnson, A. (1992). Interlaminar interface modelling for the prediction of laminate delamination. Comp. Sci. Techn. Google Scholar
  9. Allix, O., and Ladevèze, P. (2004). Advances in the statics and dynamics of delamination — Special issue. Composite Structures 22: 235–242.CrossRefGoogle Scholar
  10. Allix, O., Ladevèze, P., and Vitecoq, E. (1994). Modelling and identification of the mechanical behaviour of composite laminates in compression. Comp. Sci. Techn. 51: 35–42.CrossRefGoogle Scholar
  11. Allix, O., Lévêque, D., and Perret, L. (1998). Interlaminar interface model identification and forecast of delamination in composite laminates. Comp. Sci. Techn. 56: 671–678.CrossRefGoogle Scholar
  12. Bazant, Z., and Pijaudier-Cabot, G. (1988). Non local damage: continuum model and localisation instability. J. Appl. Mech. 287–294.Google Scholar
  13. Belytschko, T., and Lasry, D. (1988). Localisation limiters and numerical strategies softening materials. In Mazars, J., and Bazant, Z. P., eds., Amsterdam: Elsevier. 349–362.Google Scholar
  14. Berthelot, J. M.0 (2003). Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber renforced plastic laminates: static and fatigue loading. Appl. Mech. Rev. 56(1): 1–37.CrossRefGoogle Scholar
  15. Berthelot, J. M., and Le Corre, J. F. (2000). Statistical analysis of the progression of transverse cracking and delamination in cross-ply laminates. Comp. Sci. Techn. 60: 2659–2669.CrossRefGoogle Scholar
  16. Berthelot, J. M., Leblond, P., El Mahi, A., and Le Corre, J. F. (1996). Transverse cracking of cross-ply laminates, Part 1: Analysis. Composites. 27A: 989–1001.Google Scholar
  17. Boniface, L., Smith, P., Bader, M., and Rezaifard, A. (1997). Transverse ply cracking in cross-ply CFRP laminates — Initiation or propagation controlled? J. Comp. Materials. 31: 1080–1112.Google Scholar
  18. Crossman, F. W., and Wang, A. S. D. (1982). The dependence of transverse cracking and delamination on ply thickness in graphite/epoxy laminates. In Reisnider, K. L., ed., Damage in Composite Materials, ASTM STP 775. 118–139.Google Scholar
  19. Daudeville, L., and Ladevèze, P. (1993). A damage mechanics tool for laminate delamination. Composite Structures. 25: 547–555.CrossRefGoogle Scholar
  20. Devries, F., Dumontet, H., Duvaut, G., and Léné, F. (1989). Homogenization and damage for composite structures. Int. J. for Numerical Methods in Engineering. 27: 285–298.MATHCrossRefGoogle Scholar
  21. Dvorak, G. J., and Laws, N. (1987). Analysis of progressive matrix cracking in composite laminates, II. First ply failure. J. Comp. Materials. 21: 309–329.Google Scholar
  22. Espinoza, H. D. (1995). On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation. Int. J. Solids and Structures. 3105–3128.Google Scholar
  23. Feyel, F. (2003). A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua. Comput. Meth. Appl. Mech. Engrg. 192: 3233–3244.MATHCrossRefGoogle Scholar
  24. Fish, J., Sheck, K., Pandheeradi, M, and Shepard, M. S. (1997). Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput. Meth. Appl. Mech. Engrg. 148:53–73.MATHCrossRefGoogle Scholar
  25. Fukunaga, H., Chou, T. W., Peters, P. W. M., and Schulte, K. (1984). Probabilistic failure strength analyses of graphite/epoxy cross-ply laminates. J. Comp. Materials. 18: 339–356.Google Scholar
  26. Garrett, K. W., and Bailey, J. E. (1977). Multiple transverse fracture in 90° cross-ply laminates of a glass fiber reinforced polyester. J. Mater. Sci. 12: 157–168.CrossRefGoogle Scholar
  27. Geers, M., Kouznetsova, V., and Brekelmans, W. (2003). Multiscale first-order and second-order computational homogenization of microstructures towards continua. Int. J. for Multiscale Computational Engineering. 1(4): 371–386.CrossRefGoogle Scholar
  28. Ghosh, S., Lee, K., and Moorthy, S. (1995). Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. J. Solids Structures. 32(1): 27–62.MATHCrossRefMathSciNetGoogle Scholar
  29. Gudmunson, P., and Zang, W. (1993). An analytical model for thermoelastic properties of composite laminates containing transverse matrix cracks. Int. J. Solids Structures. 30: 3211–3231.CrossRefGoogle Scholar
  30. Guild, F. J., Ogin, S. L., and Smith, P. A. (1993). Modelling of 90° ply cracking in cross ply laminates, including three-dimensional effects. J. Comp. Materials. 27: 646–667.Google Scholar
  31. Hashemi, S., Kinloch, A., and Williams, J. (1990). Mechanics and mechanisms of delamination in a poly (ether sulphone)-fiber composite. Comp. Sci. Techn. 37: 429–462.CrossRefGoogle Scholar
  32. Hashin, Z. (1985). Analysis of cracked laminates: a variational approach. Mech. Mater. 4: 121–136.CrossRefGoogle Scholar
  33. Hashin, Z. (1985). Analysis of orthogonally cracked laminates under tension. ASME J. Appl. Mech. 4: 121–136.Google Scholar
  34. Hashin, Z. (1996). Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids. 44(7): 1129–1145.CrossRefGoogle Scholar
  35. Herakovich, C. (1998). Mechanics of Fibrous Composites, J. Wiley, ed.Google Scholar
  36. Highsmith, A. L., and Reifsnider, K. L. (1982). Stiffness reduction mechanisms in composite laminates. In Reisnider, K. L., ed., Damage in Composite Materials, ASTM STP 775. 103–117.Google Scholar
  37. Kouznetsova, V., Geers, M. G. D., and Brekelmans, W. A. M. (2003). Multiscale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. for Numerical Methods in Engineering. 54: 1235–1260.CrossRefGoogle Scholar
  38. Ladevèze, P. (1983). On an anisotropic damage theory. In Boehler, J. P., ed., Failure Criteria of Structured Media, Report n° 34-LMT-Cachan, Balkema. 355–364.Google Scholar
  39. Ladevèze, P. (1986). About the damage mechanics of composites. In Bathias, C., and Menkés, D., eds., Comptes-Rendus des JNC5, Paris: Pluralis Publication. 667–683.Google Scholar
  40. Ladevèze, P. (1989). About a damage mechanics approach. In Mechanics and Mechanisms of Damage in Composite and Multimaterials, ME P. 119–142.Google Scholar
  41. Ladevèze, P. (1992). A damage computational method for composite structures. J. Computer and Structure. 44(1/2): 79–87.CrossRefGoogle Scholar
  42. Ladevèze, P. (1995). A damage computational approach or composites: Basic aspects and micromechanical relations. Comput. Mech. 8: 142–150.Google Scholar
  43. Ladevèze, P. (2000). Modelling and computation until final fracture of laminate composites. In Cardon, A. H., et al., eds., Recent Developments in Durability Analysis of Composite Systems, Balkema. 39–47.Google Scholar
  44. Ladevèze, P., Allix, O., Deü, J. F., and Lévêque, D. (2000). A mesomodel for localisation and damage computation in laminates. Comput. Meth. Appl. Mech. Engrg. 1832: 105–122.CrossRefGoogle Scholar
  45. Ladevèze, P., Allix, O., Gornet, L., Lévêque, D., and Perret, L. (1998). A computational damage mechanics approach for laminates: Identification and comparison with experimental results. In Voyiadjis, G. Z., Wu, J. W., and Chaboche, J. L., eds., Damage Mechanics in Engineering Materials, Amsterdam: Elsevier. 481–500.Google Scholar
  46. Ladevèze, P., and Le Dantec, E. (1992). Damage modeling of the elementary ply for laminated composites. Comp. Sci. Techn. 43(3): 257–267.CrossRefGoogle Scholar
  47. Ladevèze, P., Loiseau, O., and Dureisseix, D. (2001). A micro-macro and parallel computational strategy for highly heterogeneous structures. Int. J. for Numerical Methods in Engineering. 52: 121–138.CrossRefGoogle Scholar
  48. Ladevèze, P., and Lubineau, G. (2001). On a damage mesomodel for laminates: micro-meso relationships, possibilities and limits. Comp. Sci. Techn. 61(15): 2149–2158.CrossRefGoogle Scholar
  49. Ladevèze, P., and Lubineau, G. (2001). On a damage mesomodel for laminates: micromechanics basis and improvement. Mech. Materials. 35: 763–775.CrossRefGoogle Scholar
  50. Ladevèze, P., and Lubineau, G. (2002). An enhanced mesomodel for laminates based on micromechanics. Comp. Sci. Techn. 62: 533–541.CrossRefGoogle Scholar
  51. Ladevèze, P., Lubineau, G., and Marsal, D. (2004). Towards a bridge between the micro-and the mesomechanics of delamination for laminated composites. Comp. Sci. Techn. Manuscript submitted for publication.Google Scholar
  52. Ladeveze, P., and Nouy, A. (2003). On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Meth. Appl. Mech. Engrg. 192: 3061–3087.MATHCrossRefMathSciNetGoogle Scholar
  53. Lagattu, F., and Lafarie-Frenot, M. (2000). Variation of PEEK matrix crystallinity in APC-2 composite subjected to large shearing deformation. Comp. Sci. Techn. 60: 605–612.CrossRefGoogle Scholar
  54. Laws, N., and Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. J. Comp. Marerials. 22: 900–916.Google Scholar
  55. Li, D. S., and Wisnom, M. (1997). Evaluating Weibull parameters for transverse cracking in cross-ply laminates. J. Comp. Materials. 31(9): 935–951.Google Scholar
  56. Loret, B., and Prevost, J. H. (1990). Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples. Comput. Meth. Appl. Mech. Engrg. 83: 247–273.MATHCrossRefGoogle Scholar
  57. Manders, P. W., Chou, T. W., Jones, F. R., and Rock, J. W. (1983). Statistical analysis of multiple fracture in 079070‡ glass fiber/epoxy resin laminates. J. Mater. Sci. 8: 352–362.Google Scholar
  58. Masters, J. E., and Reifsnider, K. L. (1982). An investigation of cumulative damage development in quasi-isotropic graphite/epoxy laminates. In Damage in Composite Materials, ASTM STP 77. 40–62.Google Scholar
  59. McCartney, L. N. (1992). Theory of stress transfer in a 0°-90°-0° cross-ply laminate containing a parallel array of transverse cracks. J. Mech. Phys. Solids. 40: 27–68.MATHCrossRefGoogle Scholar
  60. McCartney, L. N. (2000). Model to predict effects of triaxial loading on ply cracking in general symmetric laminates. Comp. Sci. Techn. 60: 2255–2279.CrossRefGoogle Scholar
  61. McCartney, L. N., Schoeppner, G. A., and Becker, W. (2000). Comparison of models for transverse ply cracks in composite laminates. Comp. Sci. Techn. 60: 2347–2359.CrossRefGoogle Scholar
  62. Nairn, J. A. (1989). The strain energy release rate of composite microcracking: a variational approach. J. Comp. Materials. 23: 1106–1129.Google Scholar
  63. Nairn, J. A., and Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int. J. Fract. 57: 1–24.CrossRefGoogle Scholar
  64. Nairn, J. A., and Hu, S. (1994). Micromechanics of damage: a case study of matrix cracking. In Talreja, R., ed., Damage Mechanics of Composite Materials, Amsterdam: Elsevier. 187–243.Google Scholar
  65. Nairn, J., Hu, S., and Bark, J. (1993). A critical evaluation of theories for predicting microcracking in composite laminates. J. Materials Science. 28: 5099–5111.CrossRefGoogle Scholar
  66. Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. Comput. Meth. Appl. Mech. Engrg. 67: 69–85.MATHCrossRefGoogle Scholar
  67. Nuismer, R. J., and Tan, S. C. (1988). Constitutive relations of a cracked composite lamina. J. Comp. Materials. 22: 306–321.Google Scholar
  68. Oden, J., Vemaganti, K., and Moes, N. (1999). Hierarchical modelling of heterogeneous solids. Comput. Meth. Appl. Mech. Engrg. 172: 2–25.CrossRefMathSciNetGoogle Scholar
  69. Ogin, S. L., Smith, P. A., and Beaumont, P. W. R. (1985). Matrix cracking and stiffness reduction during the fatigue of a (0/90)s GFRP laminate. Comp. Sci. Techn. 22: 23–31.CrossRefGoogle Scholar
  70. Pagano, N., Schoeppner, G., Kim, R., and Abrams, F. (1998). Steady-state cracking and edge effect in thermo-mechanical transverse cracking of cross-ply laminates. Comp. Sci. Techn. 58: 1811–1825.CrossRefGoogle Scholar
  71. Parvizi, A., Garrett, K. W., and Bailey, J. E. (1978). Constrained cracking in glass fiber-reinforced epoxy cross-ply laminates. J. Mater. Sci. 13: 195–201.CrossRefGoogle Scholar
  72. Renard, J., and Jeggy, T. (1989). Modélisation de la fissuration transverse dans les matériaux composites carbone/résine. In Groupe de Réflexion sur I’Endommagement, Cetim, Senlis.Google Scholar
  73. Schoeppner, G., and Pagano, N. (1998). Stress fields and energy release rates in cross-ply laminates. Int. J. Solids and Structures. 35(11): 1025–1055.MATHCrossRefGoogle Scholar
  74. Selvarathimam, A., and Weitsman, J. (1999). A shear-lag analysis of transverse cracking and delamination in cross-ply carbon-fiber/epoxy composites under dry, saturated and immersed fatigue conditions. Comp. Sci. Techn. 59:2115–2123.CrossRefGoogle Scholar
  75. Slyuis, L. J., and De Borst, R. (1992). Wave propagation and localisation in a rate-dependent cracked medium: Model formulation and one dimensional examples. Int. J. Solids and Structures. 29: 2945–2958.CrossRefGoogle Scholar
  76. Takeda, N., and Ogihara, S. (1994). Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates. Comp. Sci. Techn. 52: 309–318.CrossRefGoogle Scholar
  77. Talreja, R. (1980). Stiffness based fatigue damage characterization of fibrous composites. In Bunsell, A. R., et al., eds., Advances in Composite Materials, Oxford: Pergamon Press. 2: 1732–1739.Google Scholar
  78. Talreja, R. (1985). Transverse cracking and stiffness reduction in composite laminates. J. Comp. Materials. 19:355–375.Google Scholar
  79. Tong, J., Guild, F. J., Ogin, S. L., and Smith, P. A. (1997). On matrix crack growth in quasi-isotropic laminates, I. Experimental investigations. Comp. Sci. Techn. 57: 1527–1535.CrossRefGoogle Scholar
  80. Varna, J., and Berglund, L. A. (1992). A model for prediction of the transverse cracking strain in crosss-ply laminates. J. Reinf. Plast. Comp. 11: 708–728.Google Scholar
  81. Wang, A. S. D., Chou, P. C., and Lei, S. (1984). A stochastic model for the growth of matrix cracks in composite laminates. J. Comp. Materials. 18: 239–254.Google Scholar
  82. Wang, A. S. D., and Crossman, F. W. (1980). Initiation and growth of transverse cracks and edge delamination in composite laminates, Part 1: An energy method. J. Comp. Materials. 14: 71–87.Google Scholar
  83. Yahvac, S., Yats, L., and Wetters, D. (1991). Transverse ply cracking in toughened and untoughened graphite/epoxy and graphite/polycyanate cross-ply laminates. J. Comp. Materials. 25: 1653–1667.Google Scholar
  84. Yang, T., Liu, Y, and Wang, J. (2003). A study of the propagation of an embedded crack in a composite laminate of finite thickness. Composite Structures. 59: 473–479.CrossRefGoogle Scholar
  85. Zhang, J., Fan, J., and Soutis, C. (1992). Analysis of multiple matrix cracking in [± 0m/90n] composite laminates, Composites, 23: 291–298.CrossRefGoogle Scholar
  86. Zohdi, T. I., Oden, J. T., and Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Comput. Meth. Appl. Mech. Engrg. 155: 181–192.MathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Ladevèze Pierre
    • 1
  1. 1.LMT Cachan (ENS Cachan/CNRS/Paris 6 Univ.)CachanFrance

Personalised recommendations